满分5 > 初中数学试题 >

如图,将△ABC沿DE折叠,使点A与BC的中点F重合,下列结论:①EF∥AB,且...

如图,将△ABC沿DE折叠,使点A与BC的中点F重合,下列结论:①EF∥AB,且EF=manfen5.com 满分网AB;②∠BAF=∠CAF;③∠BDF+∠FEC=2∠BAC;④S四边形ADFE=manfen5.com 满分网AF•DE,正确的个数有( )
manfen5.com 满分网
A.1个
B.2个
C.3个
D.4个
本题利用了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、等腰三角形的判定和性质求解. 【解析】 由折叠的性质知,点A与BC的中点F重合,AD=DF,AE=EF,∠ADE=∠FDE,∠AED=∠FED,∠DAE=∠DFE, ∴△AEF,△ADF都是等腰三角形,由等腰三角形的性质:顶角的平分线与底边上的高重合知,AF⊥ED, ∴S四边形ADFE=AF•DE正确,由三角形的外角等于与它不相邻的内角和知,∠BDF+∠FEC=2∠BAC成立,由△ADF与△AEF不一定全等,∴②∠BAF=∠CAF不一定成立,由于点D,E不一定分别是AB,AC的中点,故①EF∥AB不一定成立.故选B.
复制答案
考点分析:
相关试题推荐
为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则恰好能安置的搭建方案共有( )
A.8种
B.9种
C.16种
D.17种
查看答案
不等式组manfen5.com 满分网的解集为x<6m+3,则m的取值范围是( )
A.m≤0
B.m=0
C.m>0
D.m<0
查看答案
如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m,
①用m的代数式表示点P的坐标;
②当m为何值时,线段PB最短;
(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
阅读理【解析】

对于任意正实数a,b,∵manfen5.com 满分网≥0,∴a-manfen5.com 满分网+b≥0,∴a+b≥2manfen5.com 满分网,只有点a=b时,等号成立.
结论:在a+b≥2manfen5.com 满分网(a,b均为正实数)中,若ab为定值p,则a+b≥manfen5.com 满分网,只有当a=b时,a+b有最小值2manfen5.com 满分网
根据上述内容,回答下列问题:
(1)若m>0,只有当m=______时,m+manfen5.com 满分网有最小值______
(2)思考验证:
①如图1,AB为半圆O的直径,C为半圆上任意一点,(与点A,B不重合).过点C作CD⊥AB,垂足为D,AD=a,DB=b.试根据图形验证a+b≥manfen5.com 满分网,并指出等号成立时的条件;
②探索应用:如图2,已知A(-3,0),B(0,-4)P为双曲线manfen5.com 满分网上的任意一点,过点P作PC⊥x轴于点C,PO⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.
manfen5.com 满分网
查看答案
“5•12”汶川大地震震惊全世界,面对人类特大灾害,在党中央国务院的领导下,全国人民万众一心,众志成城,抗震救灾.现在A,B两市各有赈灾物资500吨和300吨,急需运往汶川400吨,运往北川400吨,从A,B两市运往汶川,北川的耗油量如下表:
汶川(升/吨)北川(升/吨)
A市0.50.8
B市1.00.4
(1)若从A市运往汶川的赈灾物资为x吨,求完成以上运输所需总耗油量y(升)与x(吨)的函数关系式;
(2)请你设计一种最佳运输方案,使总耗油量最少,并求出完成以上方案至少需要多少升油.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.