满分5 > 初中数学试题 >

已知:如图△ABC是等边三角形,过AB边上的点D作DG∥BC,交AC于点G,在G...

已知:如图△ABC是等边三角形,过AB边上的点D作DG∥BC,交AC于点G,在GD的延长线manfen5.com 满分网上取点E,使DE=DB,连接AE、CD.
(1)求证:△AGE≌△DAC;
(2)过点E作EF∥DC,交BC于点F,请你连接AF,并判断△AEF是怎样的三角形,试证明你的结论.
(1)根据已知等边三角形的性质可推出△ADG是等边三角形,从而再利用SAS判定△AGE≌△DAC; (2)连接AF,由已知可得四边形EFCD是平行四边形,从而得到EF=CD,∠DEF=∠DCF,由(1)知△AGE≌△DAC得到AE=CD,∠AED=∠ACD,从而可得到EF=AE,∠AEF=60°,所以△AEF为等边三角形. (1)证明:∵△ABC是等边三角形, ∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°. ∵EG∥BC, ∴∠ADG=∠ABC=60°∠AGD=∠ACB=60°. ∴△ADG是等边三角形. ∴AD=DG=AG. ∵DE=DB, ∴EG=AB. ∴GE=AC. ∵EG=AB=CA, ∴∠AGE=∠DAC=60°, 在△AGE和△DAC中, ∴△AGE≌△DAC(SAS). (2)【解析】 △AEF为等边三角形. 证明:如图,连接AF, ∵DG∥BC,EF∥DC, ∴四边形EFCD是平行四边形, ∴EF=CD,∠DEF=∠DCF, 由(1)知△AGE≌△DAC, ∴AE=CD,∠AED=∠ACD. ∵EF=CD=AE,∠AED+∠DEF=∠ACD+∠DCB=60°, ∴△AEF为等边三角形.
复制答案
考点分析:
相关试题推荐
如图,在10×5的正方形网格中,每个小正方形的边长均为单位1,将△ABC向右平移4个单位,得到△A′B′C′,再把△A′B′C′绕点A′逆时针旋转90°得到△A″B″C″,请你画出△A′B′C′,和△A″B″C″(不要求写画法).

manfen5.com 满分网 查看答案
已知x2+3x-1=0,将下式化简,再求值:manfen5.com 满分网
查看答案
在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.
求证:CE⊥BE.

manfen5.com 满分网 查看答案
如图,在梯形纸片ABCD中,AD∥BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C′处,折痕DE交BC于点E,连接C′E.
(1)求证:四边形CDC′E是菱形;
(2)若BC=CD+AD,试判断四边形ABED的形状,并加以证明.

manfen5.com 满分网 查看答案
计算:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.