满分5 > 初中数学试题 >

已知:关于x的一元二次方程x2-(2m+1)x+m2+m-2=0. (1)求证:...

已知:关于x的一元二次方程x2-(2m+1)x+m2+m-2=0.
(1)求证:不论m取何值,方程总有两个不相等的实数根;
(2)若方程的两个实数根x1,x2满足manfen5.com 满分网,求m的值.
(1)要证明方程总有两个不相等的实数根就是证明其判别式永远都是一个正数; (2)首先根据一元二次方程的求根公式求出方程的两个根,然后可以求出|x1-x2|=3,再利用已知条件即可得到关于m的方程,解方程即可解决问题. (1)证明:∵△=[-(2m+1)]2-4(m2+m-2)=4m2+4m+1-4m2-4m+8=9>0 ∴不论m取何值,方程总有两个不相等实数根; 【解析】 (2)由原方程可得x= ∴x1=m+2.x2=m-1, ∴|x1-x2|=3, 又∵, ∴, ∴m=4 经检验:m=4符合题意. ∴m的值为4.
复制答案
考点分析:
相关试题推荐
学习了统计知识后,小明的数学老师要求每个学生就本班同学的上学方式进行一次调查统计,如图是小明通过收集数据后绘制的两幅不完整的统计图.请根据途中提供的信息,解答下列问题:
(1)该班共有______名学生;
(2)将“骑自行车”部分的条形统计图补充完整;
(3)在扇形统计图中,求出“乘车”部分所对应的圆心角的度数;
(4)若全年级有600名学生,试估计该年级骑自行车上学的学生人数.
manfen5.com 满分网
查看答案
如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB边上且DE⊥BE.
(1)判断直线AC与△DBE外接圆的位置关系,并说明理由;
(2)若AD=6,AE=6manfen5.com 满分网,求BC的长.

manfen5.com 满分网 查看答案
已知菱形ABCD中,∠A=72°,请设计三种不同的分法,将菱形ABCD分割成四个三角形,使得分割成的每个三角形都是等腰三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,例如图,不要求写出画法,不要求证明.)注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.
manfen5.com 满分网
查看答案
如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F,试判断△AFC的形状,并说明理由.

manfen5.com 满分网 查看答案
解方程:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.