满分5 > 初中数学试题 >

如图,△ABC内接于⊙O,AB是⊙O的直径,CD平分∠ACB交⊙O于点D,交AB...

如图,△ABC内接于⊙O,AB是⊙O的直径,CD平分∠ACB交⊙O于点D,交AB于点F,弦AE⊥CD于点H,连接CE、OH.
(1)求证:△ACE∽△CFB;
(2)若AC=6,BC=4,求OH的长.

manfen5.com 满分网
(1)△ACE、△CFB中,已知的相等角有∠CEA=∠CBA(同弧所对的圆周角),只需再找出一组对应角相等即可;易知∠ACB是直角,由于CD平分∠ACB,则∠ACH=∠FCB=45°;在Rt△CAH中,易证得∠HAC=45°,则∠CAH=∠FCB,由此得证; (2)本题需通过构建直角三角形求解;延长CB交AE的延长线于M;由于∠ACB=90°,∠CAE=45°,易证得△CAM是等腰Rt△,由此可求出CM、BM的长;△ACM中,根据等腰三角形三线合一的性质可知:H是AM的中点,则OH是△ABM的中位线,即OH=BM,由此得解. (1)证明:∵AB是⊙O的直径, ∴∠ACB=90°; ∵CD平分∠ACB, ∴∠ACD=∠FCB=45°; ∵AE⊥CD, ∴∠CAE=45°=∠FCB; 在△ACE与△BCF中,∠CAE=∠FCB,∠E=∠B, ∴△ACE∽△CFB; (2)【解析】 延长AE、CB交于点M; ∵∠FCB=45°,∠CHM=90°, ∴∠M=45°=∠CAE; ∴HA=HC=HM,CM=CA=6; ∵CB=4, ∴BM=6-4=2; ∵OA=OB,HA=HM, ∴OH是△ABM的中位线, ∴OH=BM=1.
复制答案
考点分析:
相关试题推荐
如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?
manfen5.com 满分网
查看答案
如图,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.动点P从D点出发沿DC以每秒1个单位的速度向终点C运动,动点Q从C点出发沿CB以每秒2个单位的速度向B点运动.两点同时出发,当P点到达C点时,Q点随之停止运动.
(1)梯形ABCD的面积等于______
(2)当PQ∥AB时,P点离开D点的时间等于______秒;
(3)当P,Q,C三点构成直角三角形时,P点离开D点多少时间?

manfen5.com 满分网 查看答案
某超市在家电下乡活动中销售A、B两种型号的洗衣机.A型号洗衣机每台进价500元,售价550元;B型号洗衣机每台进价1000元,售价1080元.
(1)若该超市同时一次购进A、B两种型号洗衣机共80台,恰好用去6.1万元,求能购进A、B两种型号洗衣机各多少台?
(2)该超市为使A、B两种型号洗衣机共80台的总利润(利润=售价-进价)不少于5200元,但又不超过5260元,请你帮助该超市设计相应的进货方案.
查看答案
为了开展阳光体育运动,坚持让中小学生“每天锻炼一小时”,某市某县体育局做了一个随机调查,调查内容是:每天锻炼是否超过1h及锻炼未超过1h的原因.他们随机调查了720名学生,用所得的数据制成了扇形统计图和频数分布直方图(图1、图2)
manfen5.com 满分网
根据图示,请回答以下问题:
(1)“没时间”的人数是______,并补全频数分布直方图;
(2)2007年该市中小学生约32万人,按此调查,可以估计2007年全市中小学生每天锻炼超过1h的约有______万人;
(3)如果计划2009年该市中小学生每天锻炼未超过1h的人数降到6万人,求2007年至2009年锻炼未超过1h人数的年平均降低______的百分率.
查看答案
(1)计算:(π-3.14)×(-1)2010+(-manfen5.com 满分网-2-|manfen5.com 满分网-2|+2cos30°
(2)先化简:(manfen5.com 满分网-manfen5.com 满分网)÷manfen5.com 满分网,再从不等式组manfen5.com 满分网的解集中取一个合适的整数值代入,求出原式的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.