满分5 > 初中数学试题 >

如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,...

如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2=AF•AC,cos∠ABD=manfen5.com 满分网,AD=12.
(1)求证:△ANM≌△ENM;
(2)求证:FB是⊙O的切线;
(3)证明四边形AMEN是菱形,并求该菱形的面积S.

manfen5.com 满分网
(1)利用角平分线的性质定理,可以得出AM=ME,∠AMN=∠EMN,再利用SAS可证出:△ANM≌△ENM (2)利用相似三角形的判定可证出△ABF∽△ACB,从而得出∠ABF=∠C,那么可以得到∠CBF=90° (3)利用(1)中的结论先证出∠AMN=∠ANM,可以得到AM=ME=EN=AN,从而得出四边形AMEN是菱形,再求出△BND∽△BME,利用比例线段可求出ME的长,再利用菱形的面积公式可计算出菱形的面积. (1)证明:∵BC是⊙O的直径, ∴∠BAC=90°. 又∵EM⊥BC,BM平分∠ABC, ∴AM=ME,∠AMN=∠EMN. 又∵MN=MN, ∴△ANM≌△ENM. (2)证明:∵AB2=AF•AC, ∴. 又∵∠BAC=∠FAB=90°, ∴△ABF∽△ACB. ∴∠ABF=∠C. 又∵∠FBC=∠ABC+∠FBA=90°, ∴FB是⊙O的切线. (3)【解析】 由(1)得AN=EN,AM=EM,∠AMN=∠EMN, 又∵AN∥ME, ∴∠ANM=∠EMN, ∴∠AMN=∠ANM, ∴AN=AM, ∴AM=ME=EN=AN. ∴四边形AMEN是菱形. ∵cos∠ABD=,∠ADB=90°, ∴. 设BD=3x,则AB=5x, 由勾股定理AD==4x; ∵AD=12, ∴x=3, ∴BD=9,AB=15. ∵MB平分∠AME, ∴BE=AB=15, ∴DE=BE-BD=6. ∵ND∥ME, ∴∠BND=∠BME. 又∵∠NBD=∠MBE, ∴△BND∽△BME. ∴. 设ME=x,则ND=12-x,,解得x=. ∴S=ME•DE=×6=45.
复制答案
考点分析:
相关试题推荐
某商场在销售旺季临近时,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售.
(1)请建立销售价格y(元)与周次x之间的函数关系;
(2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)与周次x之间的关系为z=-manfen5.com 满分网(x-8)2+12,1≤x≤11,且x为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少?
查看答案
如图,反比例函数y=manfen5.com 满分网的图象与一次函数y=kx+b的图象交于点A(m,2),点B(-2,n),一次函数图象与y轴的交点为C.
(1)求一次函数解析式;
(2)求C点的坐标;
(3)求△AOC的面积.

manfen5.com 满分网 查看答案
已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0),(x1,0),且1<x1<2,与y轴正半轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a+c>0;③4a+c<0;④2a-b+1>0.其中正确的结论是    (填写序号) 查看答案
如图,在等腰梯形ABCD中,AD∥BC,BC=4AD=manfen5.com 满分网,∠B=45度.直角三角板含45°角的顶点E在边BC上移动,一直角边始终经过点A,斜边与CD交于点F.若△ABE为等腰三角形,则CF的长等于   
manfen5.com 满分网 查看答案
如图,在x轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x轴的垂线与三条直线y=ax,y=(a+1)x,y=(a+2)x相交,其中a>0.则图中阴影部分的面积是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.