满分5 > 初中数学试题 >

已知两个关于x的二次函数y1与y2,y1=a(x-k)2+2(k>0),y1+y...

已知两个关于x的二次函数y1与y2,y1=a(x-k)2+2(k>0),y1+y2=x2+6x+12;当x=k时,y2=17;且二次函数y2的图象的对称轴是直线x=-1.
(1)求k的值;
(2)求函数y1,y2的表达式;
(3)在同一直角坐标系内,问函数y1的图象与y2的图象是否有交点?请说明理由.
(1)根据题意把y1代入y1+y2=x2+6x+12中即可求出y2,又当x=k时,y2=17,代入函数解析式,求出k的值; (2)根据k的值及y2的图象的对称轴求出a的值,即可求出二次函数的解析式; (3)根据题意画出各函数的图象,便可直接解答; 【解析】 (1)由y1=a(x-k)2+2,y1+y2=x2+6x+12, ∴y2=(y1+y2)-y1, =x2+6x+12-a(x-k)2-2, =x2+6x+10-a(x-k)2, 又∵当x=k时,y2=17, 即k2+6k+10=17, ∴k1=1,或k2=-7(舍去), 故k的值为1; (2)由k=1,得y2=x2+6x+12-a(x-1)2-2=(1-a)x2+(2a+6)x+10-a, ∴函数y2的图象的对称轴为x=-, ∴-=-1, ∴a=-1, 所以y1=-x2+2x+1,y2=2x2+4x+11; (3)由y1=-(x-1)2+2,得函数y1的图象为抛物线,其开口向下, 顶点坐标为(1,2); 由y2=2x2+4x+11=2(x+1)2+9,得函数y2的图象为抛物线,其开口向上,顶点坐标为(-1,9); 故在同一直角坐标系内,函数y1的图象与y2的图象没有交点.
复制答案
考点分析:
相关试题推荐
如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的表达式.
(2)足球第一次落地点C距守门员多少米?(取4manfen5.com 满分网=7)
(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取manfen5.com 满分网=5)

manfen5.com 满分网 查看答案
已知:如图,在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE⊥AC,垂足为点E.
求证:(1)△ABC是等边三角形;
(2)manfen5.com 满分网

manfen5.com 满分网 查看答案
汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性,如图,三个汉字可以看成是轴对称图形.
manfen5.com 满分网manfen5.com 满分网
(1)请在方框中再写出2个类似轴对称图形的汉字;
(2)小敏和小慧利用“土”、“口”、“木”三个汉字设计一个游戏,规则如下:将这三个汉字分别写在背面都相同的三张卡片上,背面朝上洗匀后抽出一张,放回洗匀后再抽出一张,若两次抽出的汉字能构成上下结构的汉字(如“土”“土”构成“圭”)小敏获胜,否则小慧获胜,你认为这个游戏对谁有利?请用列表或画树状图的方法进行分析,并写出构成的汉字进行说明.
查看答案
已知,如图,直线l经过A(4,0)和B(0,4)两点,它与抛物线y=ax2在第一象限内相交于点P,又知△AOP的面积为4,求a的值.

manfen5.com 满分网 查看答案
为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径,若三角板与圆相切且测得PA=5cm,求铁环的半径.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.