满分5 > 初中数学试题 >

如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分...

如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1cm,求BD的长.

manfen5.com 满分网
(1)连接OA,根据角之间的互余关系可得∠OAE=∠DEA=90°,故AE⊥OA,即AE是⊙O的切线; (2)根据圆周角定理,可得在Rt△AED中,∠AED=90°,∠EAD=30°,有AD=2DE;在Rt△ABD中,∠BAD=90°,∠ABD=30°,有BD=2AD=4DE,即可得出答案. (1)证明:连接OA, ∵DA平分∠BDE, ∴∠BDA=∠EDA. ∵OA=OD, ∴∠ODA=∠OAD, ∴∠OAD=∠EDA, ∴OA∥CE.(3分) ∵AE⊥DE, ∴∠AED=90°. ∴∠OAE=∠DEA=90°. ∴AE⊥OA. ∴AE是⊙O的切线.(5分) (2)【解析】 ∵BD是直径, ∴∠BCD=∠BAD=90°. ∵∠DBC=30°,∠BDC=60°, ∴∠BDE=120°.(6分) ∵DA平分∠BDE, ∴∠BDA=∠EDA=60°. ∴∠ABD=∠EAD=30°.(8分) ∵在Rt△AED中,∠AED=90°,∠EAD=30°, ∴AD=2DE. ∵在Rt△ABD中,∠BAD=90°,∠ABD=30°, ∴BD=2AD=4DE. ∵DE的长是1cm, ∴BD的长是4cm.(10分)
复制答案
考点分析:
相关试题推荐
两个车工,各接受了同等数量的生产任务,开始时,乙比甲每天少做4件,到甲乙都剩下624件时,乙比甲多做了两天,这时乙进行了技术革新,每天比原计划多做6件,这样甲乙二人在同一时间内完成任务.
(1)求甲乙二人原来每天各做多少件?
(2)每人原有生产任务是多少?
查看答案
当m取何值时,关于x的一元二次方程m2x2+(2m-1)x+1=0有实数根?
查看答案
在Rt△ABC中,∠C=90°,AC=3,BC=4.若以C点为圆心,r为半径所作的圆与斜边AB只有一个公共点,则r的取值范围是    查看答案
如图,半径为5的⊙P与y轴交于点M(0,-4),N(0,-10),函数y=manfen5.com 满分网(x<0)的图象过点P,则k=   
manfen5.com 满分网 查看答案
如图,PA、PB、DE分别切⊙O于A、B、C,如果△PDE的周长为8,那么PA=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.