如图所示,过点A(a,0)(a>0)且平行于y轴的直线分别与抛物线y=x
2及y=
x
2交于C、B两点.
(1)求点C、B的坐标;
(2)求线段AB与BC的比;
(3)若正方形BCDE的一边DE与y轴重合,求此正方形BCDE的面积.
考点分析:
相关试题推荐
如图,
(1)已知:P为半径为5的⊙O内一点,过P点最短的弦长为8,则OP=______
(2)在(1)的条件下,若⊙O内有一异于P点的Q点,过Q点的最短弦长为6,且这两条弦平行,求PQ的长.
(3)在(1)的条件下,过P点任作弦MN、AB,试比较PM•PN与PA•PB的大小关系,且写出比较过程.你能用一句话归纳你的发现吗?
(4)在(1)的条件下,过P点的弦CD=
,求PC、PD的长.
查看答案
如图,AB为⊙O的直径,CD⊥AB于点E,交⊙O于点D,OF⊥AC于点F.
(1)请写出三条与BC有关的正确结论;
(2)当∠D=30°,BC=1时,求圆中阴影部分的面积.
查看答案
已知一抛物线与x轴的交点是A(-2,0)、B(1,0),且经过点C(2,8).
(1)求该抛物线的解析式;
(2)求该抛物线的顶点坐标.
查看答案
如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1cm,求BD的长.
查看答案
两个车工,各接受了同等数量的生产任务,开始时,乙比甲每天少做4件,到甲乙都剩下624件时,乙比甲多做了两天,这时乙进行了技术革新,每天比原计划多做6件,这样甲乙二人在同一时间内完成任务.
(1)求甲乙二人原来每天各做多少件?
(2)每人原有生产任务是多少?
查看答案