(1)根据AD∥BC,得到∠BCD=∠CDE,又DE=BC,所以△BCD≌△EDC,根据全等三角形的对应角相等即可得证.
(2)根据全等三角形对应边相等得到BD=CE,又等腰梯形的对角线相等,所以AC=CE,所以是等腰三角形.
(1)证明:
证法一:∵AD∥BC,
∴∠BCD=∠EDC,(1分)
在△BCD和△EDC中,
,
∴△BCD≌△EDC(SAS)(3分)
∴∠E=∠DBC(2分)
证法二:∵DE∥BC,DE=BC,(2分)
∴四边形BCED是平行四边形,(一组对边平行且相等的四边形是平行四边形)
∴∠E=∠DBC.(2分)
(2)【解析】
△ACE是等腰三角形.(2分)
理由为:∵梯形ABCD为等腰梯形,
∴AB=DC,AC=BD,
又BC=CB,
∴△ABC≌△DCB,
∴∠ACB=∠BDC,
∵AE∥BC,
∴∠EAC=∠ACB,
∴∠DBC=∠EAC,
又∠DBC=∠E,
∴∠EAC=∠E,
则AC=EC,即△ACE是等腰三角形.