满分5 > 初中数学试题 >

如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4). (1)求抛物线...

如图,对称轴为直线x=manfen5.com 满分网的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?
②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A、B两点坐标代入求解即可. (2)平行四边形的面积为三角形OEA面积的2倍,因此可根据E点的横坐标,用抛物线的解析式求出E点的纵坐标,那么E点纵坐标的绝对值即为△OAE的高,由此可根据三角形的面积公式得出△AOE的面积与x的函数关系式进而可得出S与x的函数关系式. ①将S=24代入S,x的函数关系式中求出x的值,即可得出E点的坐标和OE,OA的长;如果平行四边形OEAF是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF是否为菱形. ②如果四边形OEAF是正方形,那么三角形OEA应该是等腰直角三角形,即E点的坐标为(3,-3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E点. 【解析】 (1)因为抛物线的对称轴是x=, 设解析式为y=a(x-)2+k. 把A,B两点坐标代入上式,得, 解得a=,k=-. 故抛物线解析式为y=(x-)2-,顶点为(,-). (2)∵点E(x,y)在抛物线上,位于第四象限,且坐标适合y=(x-)2-, ∴y<0, 即-y>0,-y表示点E到OA的距离. ∵OA是OEAF的对角线, ∴S=2S△OAE=2××OA•|y|=-6y=-4(x-)2+25. 因为抛物线与x轴的两个交点是(1,0)和(6,0), 所以自变量x的取值范围是1<x<6. ①根据题意,当S=24时,即-4(x-)2+25=24. 化简,得(x-)2=. 解得x1=3,x2=4. 故所求的点E有两个, 分别为E1(3,-4),E2(4,-4), 点E1(3,-4)满足OE=AE, 所以平行四边形OEAF是菱形; 点E2(4,-4)不满足OE=AE, 所以平行四边形OEAF不是菱形; ②当OA⊥EF,且OA=EF时,平行四边形OEAF是正方形, 此时点E的坐标只能是(3,-3), 而坐标为(3,-3)的点不在抛物线上, 故不存在这样的点E,使平行四边形OEAF为正方形.
复制答案
考点分析:
相关试题推荐
气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东45°方向的B点生成,测得OB=100manfen5.com 满分网km.台风中心从点B以40km/h的速度向正北方向移动,经5h后到达海面上的点C处.因受气旋影响,台风中心从点C开始以30km/h的速度向北偏西60°方向继续移动.以O为原点建立如图所示的直角坐标系.
(1)台风中心生成点B的坐标为______
查看答案
随着“每天锻炼一小时,健康工作五十年,幸福生活-辈子”的“全国亿万学生阳光体育运动”的展开,某校对七、八、九三个年级的学生依据《国家学生体育健康标准》进行了第一次测试,按统一标准评分后,分年级制成统计图(未画完整).为了对成绩优秀学生进行对比,又分别抽取了各年级第一次测试成绩的前十名学生进行了第二次测试,成绩见表)(采用100分评分,得分均为60分以上的整数).
(1)如果将九年级学生的第一次测试成绩制成扇形统计图,则90分以上(不包括90分)的人数对应的圆心角的度数是______
(2)在第二次测试中,七年级学生成绩的众数是______,八年级学生成绩的中位数是______,九年级学生成绩的平均数是______
(3)若八年级学生第二次测试成绩在90分以上(不包括90分)的人数是第一次测试中的同类成绩人数的0.5%,请补全第一次测试成绩统计图.
 年级 10名学生的第二次成绩
 七年级 81 85 89 81 87
 90 80 76 91 86
 八年级 97 88 88 87 85
 87 85 85 76 77
 九年级 80 81 96 80 80
 97 88 79 85 89


manfen5.com 满分网 查看答案
下列图案均是用长度相同的小木棒按一定规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2根图案需10根小木棒…,依次规律,拼搭第9个图案需要小木棒    根.
manfen5.com 满分网 查看答案
如图,菱形OABC中,∠A=120°,OA=1,将菱形OABC绕点O按顺时针方向旋转90°,则图中由弧BB′,B′A′,弧A′C,CB围成的阴影部分的面积是    .(结果保留根号)
manfen5.com 满分网 查看答案
要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短?小聪根据实际情况,以街道旁为x轴,建立了如图所示的平面直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.