满分5 > 初中数学试题 >

如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所...

如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△AnBnCn的顶点Bn、Cn在圆上.
manfen5.com 满分网manfen5.com 满分网
(1)如图1,当n=1时,求正三角形的边长a1
(2)如图2,当n=2时,求正三角形的边长a2
(3)如题图,求正三角形的边长an(用含n的代数式表示)
(1)设PQ与B1C1交于点D,连接B1O,得出OD=A1D-OA1,用含a1的代数式表示OD,在△OB1D中,根据勾股定理求出正三角形的边长a1; (2)设PQ与B2C2交于点E,连接B2O,得出OE=A1E-OA1,用含a2的代数式表示OE,在△OB2E中,根据勾股定理求出正三角形的边长a2; (3)设PQ与BnCn交于点F,连接BnO,得出OF=A1F-OA1,用含an的代数式表示OF,在△OBnF中,根据勾股定理求出正三角形的边长an. 【解析】 (1)设PQ与B1C1交于点D,连接B1O. ∵△PB1C1是等边三角形, ∴A1D=PB1•sin∠PB1C1=a1•sin60°=a1, ∴OD=A1D-OA1=a1-1, 在△OB1D中,OB12=B1D2+OD2, ∴OD=A1D-OA1=a1-1, 即12=(a1)2+(a1-1)2, 解得a1=; (2)设PQ与B2C2交于点E,连接B2O. ∵△A2B2C2是等边三角形, ∴A2E=A2B2•sin∠A2B2C2=a2•sin60°=a2, ∵△PB1C1是与△A2B2C2边长相等的正三角形, ∴PA2=A2E=a2, OE=A1E-OA1=a2-1, 在△OB2E中,OB22=B2E2+OE2, 即12=(a2)2+(a2-1)2, 解得a2=; (3)设PQ与BnCn交于点F,连接BnO, 得出OF=A1F-OA1=nan-1, 同理,在△OBnF中,OBn2=BnF2+OF2, 即12=(an)2+(nan-1)2, 解得an=.
复制答案
考点分析:
相关试题推荐
某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途经配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B地,乙车从B地直达A地,图是甲、乙两车间的距离y(千米)与乙车出发x(时)的函数的部分图象.
(1)A、B两地的距离是______千米,甲车出发______小时到达C地;
(2)求乙车出发2小时后直至到达A地的过程中,y与x的函数关系式及x的取值范围,并在图中补全函数图象;
(3)乙车出发多长时间,两车相距150千米.

manfen5.com 满分网 查看答案
如图,有一段斜坡BC长为10米,坡角∠CBD=12°,为方便残疾人的轮椅车通行,现准备把坡角降为5°.
(1)求坡高CD;
(2)求斜坡新起点A到原起点B的距离(精确到0.1米).
参考数据:sin12°≈0.21,cos12°≈0.98,tan5°≈0.09.
manfen5.com 满分网
查看答案
某班毕业联欢会设计的即兴表演节目的摸球游戏,游戏采用一个不透明的盒子,里面装有五个分别标有数字1、2、3、4、5的乒乓球,这些球出书字外,其他完全相同,游戏规则是参加联欢会的50名同学,每人将盒子乒乓球摇匀后闭上眼睛从中随即一次摸出两个球(每位同学必须且只能摸一次).若两球上的数字之和是偶数就给大家即兴表演一个节目;否则,下个同学接着做摸球游戏依次进行.
(1)用列表法或画树状图法求参加联欢会同学表演即兴节目的概率;
(2)估计本次联欢会上有多少个同学表演即兴节目.
查看答案
在全运会射击比赛的选拔赛中,运动员甲10次射击成绩的统计表和扇形统计图如下:
命中环数10987
命中次数32
(1)根据统计表(图)中提供的信息,补全统计表及扇形统计图;
(2)已知乙运动员10次射击的平均成绩为9环,方差为1.2,如果只能选一人参加比赛,你认为应该派谁去?并说明理由.(参考资料:manfen5.com 满分网

manfen5.com 满分网 查看答案
如图,AB=AC,AD⊥BC于点D,AD=AE,AB平分∠DAE交DE于点F,请你写出图中三对全等三角形,并选取其中一对加以证明.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.