满分5 > 初中数学试题 >

如图,抛物线y=x2+bx-2与x轴交于A,B两点,与y轴交于C点,且A(-1,...

如图,抛物线y=manfen5.com 满分网x2+bx-2与x轴交于A,B两点,与y轴交于C点,且A(-1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.

manfen5.com 满分网
(1)把A点的坐标代入抛物线解析式,求b的值,即可得出抛物线的解析式,根据顶点坐标公式,即可求出顶点坐标; (2)根据直角三角形的性质,推出AC2=OA2+OC2=5,BC2=OC2+OB2=20,即AC2+BC2=25=AB2,即可确定△ABC是直角三角形; (3)作出点C关于x轴的对称点C′,则C′(0,2),OC'=2.连接C'D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小.首先确定最小值,然后根据三角形相似的有关性质定理,求m的值 【解析】 (1)∵点A(-1,0)在抛物线y=x2+bx-2上, ∴×(-1 )2+b×(-1)-2=0,解得b= ∴抛物线的解析式为y=x2-x-2. y=x2-x-2 =( x2-3x-4 ) =(x-)2-, ∴顶点D的坐标为 (,-). (2)当x=0时y=-2,∴C(0,-2),OC=2. 当y=0时,x2-x-2=0,∴x1=-1,x2=4,∴B (4,0) ∴OA=1,OB=4,AB=5. ∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20, ∴AC2+BC2=AB2.∴△ABC是直角三角形. (3)作出点C关于x轴的对称点C′,则C′(0,2),OC′=2, 连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小. 解法一:设抛物线的对称轴交x轴于点E. ∵ED∥y轴,∴∠OC′M=∠EDM,∠C′OM=∠DEM ∴△C′OM∽△DEM. ∴ ∴, ∴m=. 解法二:设直线C′D的解析式为y=kx+n, 则, 解得:. ∴. ∴当y=0时,,. ∴.
复制答案
考点分析:
相关试题推荐
如图,在路边O处安装路灯,路面宽ED为16米,灯柱OB与路边的距离OE为2米,且灯柱OB与灯杆AB成120°角.路灯A采用锥形灯罩,灯罩轴线AC与灯杆AB垂直,并与路面ED交于点C,AE恰好与OD垂直.当路灯A到路面的距离AE为多少米时,点C正好是路面ED的中点?并求此时灯柱OB的高.(精确到0.1米)
manfen5.com 满分网
查看答案
已知:关于x的一元二次方程mx2-(3m+2)x+2m+2=0(m>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1<x2).若y是关于m的函数,且y=x2-2x1,求这个函数的解析式.
查看答案
阅读对人成长的影响是很大的、希望中学共有1500名学生,为了了解学生课外阅读的情况,就“你最喜欢的图书类别”(只选一项)随机调查了部分学生,并将调查结果统计后绘制成如下统计表和条形统计图.请你根据统计图表提供的信息解答下列问题:
种类频数频率
科普0.15
艺术78
文学0.59
其它81
(1)这次随机调查了______名学生;
(2)把统计表和条形统计图补充完整;
(3)随机调查一名学生,恰好是最喜欢文学类图书的概率是多少?

manfen5.com 满分网 查看答案
如图,在正方形ABCD中,E是AB边上任意一点,∠ECF=45°,CF交AD于点F,将△CBE绕点C顺时针旋转到△CDP,点P恰好在AD的延长线上.
(1)求证:EF=PF;
(2)直线EF与以C为圆心,CD为半径的圆相切吗?为什么?

manfen5.com 满分网 查看答案
现有如图1所示的两种瓷砖,请从这两种瓷砖中各选2块,拼成一个新的正方形地板图案,使拼铺的图案成轴对称图形或中心对称图形(如示例图1.1).
(1)分别在图1.2、图1.3中各设计一种与示例图不同的拼法,使其中有一个是轴对称图形而不是中心对称图形,另一个是中心对称图形而不是轴对称图形;
(2)分别在图1.4、图1.5、图1.6中各设计一个拼铺图案,使这三个图案都是轴对称图形又是中心对称图形,且互不相同(三个图案之间若能通过轴对称、平移、旋转变换相互得到,则视为相同图案).manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.