满分5 >
初中数学试题 >
下列交通标志中既是中心对称图形,又是轴对称图形的是( ) A. B. C. D....
下列交通标志中既是中心对称图形,又是轴对称图形的是( )
A.
B.
C.
D.
考点分析:
相关试题推荐
2cos30°的值等于( )
A.1
B.
C.
D.2
查看答案
已知:如图,抛物线y=ax
2+bx+c(a≠O)经过X轴上的两点A(x
1,0)、B(x
2,0)和y轴上的点C(0,
),⊙P的圆心P在y轴上,且经过B、C两点,若b=
a,AB=2
,
(1)求抛物线的解析式;
(2)设D在抛物线上,且C,D两点关于抛物线的对称轴对称,问直线BD是否经过圆心P,并说明理由;
(3)设直线BD交⊙P于另一点E,求经过E点的⊙P的切线的解析式.
查看答案
如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,
,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).
(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围);
(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积;
(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.
查看答案
在图1至图3中,直线MN与线段AB相交于点O,∠1=∠2=45°.
(1)如图1,若AO=OB,请写出AO与BD的数量关系和位置关系;
(2)将图1中的MN绕点O顺时针旋转得到图2,其中AO=OB.求证:AC=BD,AC⊥BD;
(3)将图2中的OB拉长为AO的k倍得到图3,求
的值.
查看答案
某仪器厂计划制造A、B两种型号的仪器共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于制造仪器,两种型号的制造成本和售价如下表:
| A | B |
成本(万元/套) | 25 | 28 |
售价(万元/套) | 30 | 34 |
(1)该厂对这两种型号仪器有哪几种制造方案?
(2)该厂应该选用哪种方案制造可获得利润最大?
(3)根据市场调查,每套B型仪器的售价不会改变,每套A型仪器的售价将会提高a万元(a>0),且所制造的两种仪器可全部售出,问该厂又将如何制造才能获得最大利润?
查看答案