已知:如图,抛物线y=ax
2+bx+c(a≠O)经过X轴上的两点A(x
1,0)、B(x
2,0)和y轴上的点C(0,
),⊙P的圆心P在y轴上,且经过B、C两点,若b=
a,AB=2
,
(1)求抛物线的解析式;
(2)设D在抛物线上,且C,D两点关于抛物线的对称轴对称,问直线BD是否经过圆心P,并说明理由;
(3)设直线BD交⊙P于另一点E,求经过E点的⊙P的切线的解析式.
查看答案
如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,
,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).
(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围);
(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积;
(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.
查看答案