满分5 > 初中数学试题 >

如图,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛物线y=a...

如图,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).
(1)求此二次函数的解析式;
(2)设此抛物线的顶点为P,对称轴与线段AC相交于点Q,求点P和点Q的坐标;
(3)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标.

manfen5.com 满分网
(1)先求出一元二次方程的两个根,即可知与x轴的两个交点B,C的坐标,设出两点式,用待定系数法求出二次函数的解析式; (2)根据B,C两点的坐标可求出二次函数的顶点坐标及对称轴方程,根据A,C两点的坐标可求出线段AC所在直线的表达式,求出两方程的交点即为Q点的坐标; (3)根据两点之间线段最短,故当此三点在同一条直线上时MQ+MA取得最小值,作A关于x轴的对称点A′,连接A′Q;A′Q与x轴交于点M即为所求的点. 【解析】 (1)解方程x2+2x-3=0 得x1=-3,x2=1(11分) ∴抛物线与x轴的两个交点坐标为:C(-3,0),B(1,0)(2分) 设抛物线的解析式为y=a(x+3)(x-1)(a≠0).(3分) ∵A(3,6)在抛物线上 ∴6=a(3+3)(3-1), ∴a=.(4分) ∴抛物线解析式为:y=x2+x-(5分). (2)由y=x2+x-=(x+1)2-2(6分) ∴抛物线顶点P的坐标为:(-1,-2),对称轴方程为:x=-1.(7分) 设直线AC的方程为:y=k1x+b1. ∵A(3,6),C(-3,0), ∴在该直线上, 解得 直线AC的方程为:y=x+3(9分) 将x=-1代入y=x+3得y=2, ∴Q点坐标为(-1,2).(10分) (3)作A关于x轴的对称点A′(3,-6), 连接A'Q;A'Q与x轴交于点M即为所求的点(11分) 设直线A'Q方程为y=kx+b ∴ 解得. ∴直线A'Q:y=-2x(12分) 令x=0,则y=0(13分). ∴M点坐标为(0,0).(14分)
复制答案
考点分析:
相关试题推荐
如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,交AC于点E,过点D作DF⊥AC,垂足为F.
(1)求证:DF为⊙O的切线;
(2)若过A点且与BC平行的直线交BE的延长线于G点,连接CG.当△ABC是等边三角形时,求∠AGC的度数.

manfen5.com 满分网 查看答案
有两个可以自由转动的均匀转盘A,B都被分成了3等份,并在每一份内均标有数字,如图所示,规则如下:
①分别转动转盘;
②两个转盘停止后观察两个指针所指份内的数字(若指针停在等份线上,那么重转一次,直到指针指向某一份内为止).
(1)用列表法(或树状图)分别求出“两个指针所指的数字都是方程x2-5x+6=0的解”的概率和“两个指针所指的数字都不是方程x2-5x+6=0的解”的概率;
(2)王磊和张浩想用这两个转盘作游戏,他们规定:若“两个指针所指的数字都是x2-5x+6=0的解”时,王磊得1分;若“两个指针所指的数字都不是x2-5x+6=0的解”时,张浩得3分,这个游戏公平吗?若认为不公平,请修改得分规定,使游戏对双方公平.

manfen5.com 满分网 查看答案
正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则Bn的坐标是   
manfen5.com 满分网 查看答案
已知二次函数y=ax2+bx+c(a,b,c是常数),x与y的部分对应值如下表,则当x满足的条件是    时,y=0;当x满足的条件是    时,y>0.
x-2-1123
y-16-62-6
查看答案
如图,半圆的直径AB=10,P为AB上一点,点C,D为半圆的三等分点,则阴影部分的面积等于   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.