满分5 > 初中数学试题 >

如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、...

如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.
(1)求此抛物线的解析式;
(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.
①求证:PB=PS;
②判断△SBR的形状;
③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.
manfen5.com 满分网
(1)根据B点的坐标以及矩形的面积可以求出矩形的四个顶点的坐标,根据待定系数法就可以求出抛物线的解析式; (2)①过点B作BN⊥PS,垂足为N,可以设P的坐标是(a,a2+1),根据勾股定理就可以用a表示出PB=PS的长,由此可以证明; ②判断△SBR的形状,根据①同理可知BQ=QR,根据等边对等角就可以证明∠SBR=90度,则△SBR为直角三角形; ③若以P、S、M为顶点的三角形与以Q、M、R为顶点的三角形相似,有△PSM∽△MRQ和△PSM∽△QRM两种情况,根据相似三角形的对应边的比相等就可以求出. 【解析】 (1)方法一: ∵B点坐标为(0.2), ∴OB=2, ∵矩形CDEF面积为8, ∴CF=4. ∴C点坐标为(-2,2).F点坐标为(2,2). 设抛物线的解析式为y=ax2+bx+c. 其过三点A(0,1),C(-2.2),F(2,2). 得, 解这个方程组,得a=,b=0,c=1, ∴此抛物线的解析式为y=x2+1.(3分) 方法二: ∵B点坐标为(0.2), ∴OB=2, ∵矩形CDEF面积为8, ∴CF=4. ∴C点坐标为(-2,2), 根据题意可设抛物线解析式为y=ax2+c. 其过点A(0,1)和C(-2.2) 解这个方程组,得a=,c=1 此抛物线解析式为y=x2+1. (2)①证明:如图(2)过点B作BN⊥PS,垂足为N. ∵P点在抛物线y=x2+1上.可设P点坐标为(a,a2+1). ∴PS=a2+1,OB=NS=2,BN=-a. ∴PN=PS-NS=, 在Rt△PNB中. PB2=PN2+BN2=(a2-1)2+a2=(a2+1)2 ∴PB=PS=.(6分) ②根据①同理可知BQ=QR. ∴∠1=∠2, 又∵∠1=∠3, ∴∠2=∠3, 同理∠SBP=∠5(7分) ∴2∠5+2∠3=180° ∴∠5+∠3=90° ∴∠SBR=90度. ∴△SBR为直角三角形.(8分) ③方法一:如图(3)作QN⊥PS, 设PS=b,QR=c, ∵由①知PS=PB=b.QR=QB=c,PQ=b+c.PN=b-c. ∴QN2=SR2=(b+c)2-(b-c)2 ∴.(9分) 假设存在点M.且MS=x,则MR=. 若使△PSM∽△MRQ, 则有. 即x2-2x+bc=0 ∴. ∴SR=2 ∴M为SR的中点.(11分) 若使△PSM∽△QRM, 则有. ∴. ∴. ∴M点即为原点O. 综上所述,当点M为SR的中点时.△PSM∽△MRQ; 当点M为原点时,△PSM∽△MRQ.(13分) 方法二: 若以P、S、M为顶点的三角形与以Q、M、R为顶点的三角形相似, ∵∠PSM=∠MRQ=90°, ∴有△PSM∽△MRQ和△PSM∽△QRM两种情况. 当△PSM∽△MRQ时.∠SPM=∠RMQ,∠SMP=∠RQM. 由直角三角形两锐角互余性质.知∠PMS+∠QMR=90度. ∴∠PMQ=90度.(9分) 取PQ中点为T.连接MT.则MT=PQ=(QR+PS).(10分) ∴MN为直角梯形SRQP的中位线, ∴点M为SR的中点(11分) ∴=1 当△PSM∽△QRM时, ∴QB=BP ∵PS∥OB∥QR ∴点M为原点O. 综上所述,当点M为SR的中点时,△PSM∽△MRQ; 当点M为原点时,△PSM∽△QRM.(13分)
复制答案
考点分析:
相关试题推荐
在等腰梯形ABCD中,AD∥BC,AB=DC,且BC=2.以CD为直径作⊙O1交AD于点E,过点E作EF⊥AB于点F.建立如图所示的平面直角坐标系,已知A、B两点坐标分别为A(2,0),B(0,manfen5.com 满分网).
(1)求C,D两点的坐标;
(2)求证:EF为⊙O1的切线;
(3)线段CD上是否存在点P,使以点P为圆心,PD为半径的⊙P与y轴相切.如果存在,请求出P点坐标;如果不存在,请说明理由.
manfen5.com 满分网
查看答案
为了迎接2002年世界杯足球赛的到来,某足球协会举办了一次足球联赛,其记分规则及奖励方案如下表
胜一场平一场负一场
积分31
奖励(元/每人)1500700
当比赛进行到第12轮结束(每队均需比赛12场)时,A队共积分19分.
(1)请通过计算,判断A队胜、平、负各几场;
(2)若每赛一场,每名参赛队员均得出场费500元,设A队其中一名参赛队员所得的奖金与出场费的和为W(元),试求W的最大值.
查看答案
阅读并解答下面问题:
(1)如图所示,直线l的两侧有A、B两点,在l上求作一点P,使AP+BP的值最小.(要求尺规作图,保留作图痕迹,不写画法和证明)
(2)如图A、B两个化工厂位于一段直线形河堤的同侧,A工厂至河堤的距离AC为1km,B工厂到河堤的距离BD为2km,经测量河堤上C、D两地间的距离为6km.现准备在河堤边修建一个污水处理厂,为使A、B两厂到污水处理厂的排污管道最短,污水处理厂应建在距C地多远的地方?
(3)通过以上解答,充分展开联想,运用数形结合思想,请你尝试解决下面问题:若manfen5.com 满分网,当x为何值时,y的值最小,并求出这个最小值.

manfen5.com 满分网 查看答案
在一张长为9厘米,宽为8厘米的矩形纸板上,剪下一个腰长为5厘米的等腰三角形(要求等腰三角形的一个顶点与矩形的一个顶点重合,其余两个顶点在矩形的边上),请你计算剪下的等腰三角形的面积?

manfen5.com 满分网 查看答案
一个家庭有3个孩子,(1)求这个家庭有2个男孩和1个女孩的概率;(2)求这个家庭至少有一个男孩的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.