满分5 > 初中数学试题 >

已知:如图,二次函数图象的顶点坐标为C(1,-2),直线y=kx+m的图象与该二...

已知:如图,二次函数图象的顶点坐标为C(1,-2),直线y=kx+m的图象与该二次函数的图象交于A、B两点,其中A点坐标为(3,0),B点在y轴上.点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这个二次函数的图象交于点E.
(1)求这个二次函数的解析式;
(2)设点P的横坐标为x,求线段PE的长(用含x 的代数式表示);
(3)点D为直线AB与这个二次函数图象对称轴的交点,若以点P、E、D为顶点的三角形与△AOB相似,请求出P点的坐标.

manfen5.com 满分网
(1)首先设二次函数的解析式为y=a(x-1)2-2,由A点坐标为(3,0),则可将A点的坐标代入函数解析式,利用待定系数法即可求得这个二次函数的解析式; (2)首先利用待定系数法求得直线AB的解析式,然后由P在直线上,将x代入直线方程,即可求得P的纵坐标,又由E在抛物线上,则可求得E的纵坐标,它们的差即为PE的长; (3)分别从当∠EDP=90°时,△AOB∽△EDP与当∠DEP=90°时,△AOB∽△DEP两种情况去分析,注意利用相似三角形的对应边成比例等性质,即可求得答案,注意不要漏解. 【解析】 (1)设二次函数的解析式为y=a(x-1)2-2, ∵A(3,0)在抛物线上, ∴0=a(3-1)2-2 ∴a=, ∴y=(x-1)2-2, (2)抛物线与y轴交点B的坐标为(0,), 设直线AB的解析式为y=kx+m, ∴, ∴, ∴直线AB的解析式为y=x-. ∵P为线段AB上的一个动点, ∴P点坐标为(x,x-).(0<x<3) 由题意可知PE∥y轴,∴E点坐标为(x,x2-x-), ∵0<x<3, ∴PE=(x-)-(x2-x-)=-x2+x, (3)由题意可知D点横坐标为x=1,又D点在直线AB上, ∴D点坐标(1,-1). ①当∠EDP=90°时,△AOB∽△EDP, ∴. 过点D作DQ⊥PE于Q, ∴xQ=xP=x,yQ=-1, ∴△DQP∽△AOB∽△EDP, ∴, 又OA=3,OB=,AB=, 又DQ=x-1, ∴DP=(x-1), ∴, 解得:x=-1±(负值舍去). ∴P(-1,)(如图中的P1点); ②当∠DEP=90°时,△AOB∽△DEP, ∴. 由(2)PE=-x2+x,DE=x-1, ∴, 解得:x=1±,(负值舍去). ∴P(1+,-1)(如图中的P2点); 综上所述,P点坐标为(-1,)或(1+,-1).
复制答案
考点分析:
相关试题推荐
已知:矩形OABC的顶点O在平面直角坐标系的原点,边OA、OC分别在x、y轴的正半轴 上,且OA=3cm,OC=4cm,点M从点A出发沿AB向终点B运动,点N从点C出发沿CA向终点A运动,点M、N同时出发,且运动的速度均为1cm/秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t秒.
(1)当点N运动1秒时,求点N的坐标;
(2)试求出多边形OAMN的面积S与t的函数关系式;
(3)t为何值时,以△OAN的一边所在直线为对称轴翻折△OAN,翻折前后的两个三角形所组成的四边形为菱形?

manfen5.com 满分网 查看答案
已知:关于x的方程kx2+(2k-3)x+k-3=0.
(1)求证:方程总有实数根;
(2)当k取哪些整数时,关于x的方程kx2+(2k-3)x+k-3=0的两个实数根均为负整数?
查看答案
猜想、探究题:
(1)观察与发现
小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).你认为△AEF是什么形状的三角形?manfen5.com 满分网

(2)实践与运用
将矩形纸片ABCD(AB<CD)沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D'处,折痕为EG(如图④);再展平纸片(如图⑤).
猜想△EBG的形状,证明你的猜想,并求图⑤中∠FEG的大小.manfen5.com 满分网
查看答案
某校数学兴趣小组成员小华对本班上期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数、频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题:
(1)频数、频率分布表中a=______,b=______
(2)补全频数分布直方图;
(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少?
分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计
频数2a2016450
频率0.040.160.400.32b1


manfen5.com 满分网 查看答案
已知:如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙O与BC边相切于点D,连接AD.
(1)求证:AD是∠BAC的平分线;
(2)若AC=3,tanB=manfen5.com 满分网,求⊙O的半径.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.