延长AF、BC交于点G.根据AAS可以证明△AFD≌△GFC,则AG=2AF=8,CG=AD=2.7;根据勾股定理,得BG=10,则BC=7.3;根据等边对等角,得∠BAE=∠B,根据等角的余角相等,得∠EAG=∠AGE,则AE=GE,则BE=BG=5,进而求得CE的长.
【解析】
延长AF、BC交于点G.
∵AD∥BC,
∴∠D=∠FCG,∠DAF=∠G.
又DF=CF,
∴△AFD≌△GFC.
∴AG=2AF=8,CG=AD=2.7.
∵AF⊥AB,AB=6,
∴BG=10.
∴BC=BG-CG=7.3.
∵AE=BE,
∴∠BAE=∠B.
∴∠EAG=∠AGE.
∴AE=GE.
∴BE=BG=5.
∴CE=BC-BE=2.3.
故选D.