满分5 > 初中数学试题 >

如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对...

如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒).
(1)点A的坐标是______,点C的坐标是______
(2)设△OMN的面积为S,求S与t的函数关系式;
(3)探求(2)中得到的函数S有没有最大值?若有,求出最大值;若没有,说明理由.

manfen5.com 满分网
(1)根据B点的坐标即可求出A、C的坐标. (2)本问要分类进行讨论: ①当直线m在AC下方或与AC重合时,即当0<t≤4时,根据平行得到两对同位角的相等可证△OMN∽△OAC,用两三角形的相似比求出面积比,即可得出S与t的函数关系式. ②当直线m在AC上方时,即当4<t<8时,由平行得到一对同位角相等,再由一对直角的相等得到△DAM∽△AOC,根据相似得比例,由OD,AD表示出AM的长,进而得到BM的长,再由MN∥AC,得到两对同位角的相等,从而得到△BMN∽△BAC,由相似得比例BN的长,从而得到CN的长,然后分别表示出各个三角形的面积,可用矩形OABC的面积-三角形BMN的面积-三角形OCN的面积-三角形OAM的面积来求得. (3)根据(2)得出的函数的性质和自变量的取值范围即可求出面积S的最大值及对应的t的值. 【解析】 (1)(4,0),(0,3); (2)当0<t≤4时,OM=t ∵MN∥AC, ∴∠OMN=∠OAC,∠ONM=∠OCA, ∴△OMN∽△OAC, ∴=,即=, ∴ON=,则S=OM•ON=t2; 当4<t<8时, 如图,∵OD=t, ∴AD=t-4, ∵MN∥AC, ∴∠CAO=∠MDA, 又∠COA=∠MAD=90°, ∴△DAM∽△AOC,可得AM=(t-4), ∴BM=6-, ∵MN∥AC, ∴∠BNM=∠BCA,∠BMN=∠BAC, ∴△BMN∽△BAC,可得BN=BM=8-t ∴CN=t-4 S=矩形OABC的面积-Rt△OAM的面积-Rt△MBN的面积-Rt△NCO的面积 =12-(t-4)-(8-t)(6-)-=t2+3t (3)有最大值. 当0<t≤4时, ∵抛物线S=t2的开口向上,在对称轴t=0的右边,S随t的增大而增大 ∴当t=4时,S可取到最大值×42=6;(11分) 当4<t<8时, ∵抛物线S=t2+3t的开口向下,它的顶点是(4,6), ∴S≤6, 综上,当t=4时,S有最大值6.
复制答案
考点分析:
相关试题推荐
如图1,两半径为r的等圆⊙O1和⊙O2相交于M,N两点,且⊙O2过点O1.过M点作直线AB垂直于MN,分别交⊙O1和⊙O2于A,B两点,连接NA,NB.
(1)猜想点O2与⊙O1有什么位置关系,并给出证明;
(2)猜想△NAB的形状,并给出证明;
(3)如图2,若过M的点所在的直线AB不垂直于MN,且点A,B在点M的两侧,那么(2)中的结论是否成立,若成立请给出证明.

manfen5.com 满分网 查看答案
某中学要印制期末考试卷,甲印刷厂提出:每套试卷收0.6元印刷费,另收400元制版费;乙印刷厂提出:每套试卷收1元印刷费,不再收取制版费.
(1)分别写出两个厂的收费y(元)与印刷数量x(套)之间的函数关系式;
(2)请在下面的直角坐标系中,分别作出(1)中两个函数的图象;
(3)若学校有学生2 000人,为保证每个学生均有试卷,那么学校至少要付出印刷费多少元?
manfen5.com 满分网
查看答案
某县七年级有15000名学生参加安全应急预案知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了400名学生的得分(得分取正整数,满分100分)进行统计:
                                               频率分布表
分  组频  数频  率
49.5~59.520
59.5~69.5320.08
69.5~79.50.20
79.5~89.5124
89.5~100.51440.36
合  计4001
请你根据不完整的频率分布表.解答下列问题:
(1)补全频率分布表;
(2)补全频数分布直方图;
manfen5.com 满分网
(3)若将得分转化为等级,规定得分低于59.5分评为“D”,59.5~69.5分评为“C”,69.5~89.5分评为“B”,89.5~100.5分评为“A”,这次15000名学生中约有多少人评为“D”?如果随机抽取一名参赛学生的成绩等级,则这名学生的成绩评为“A”、“B”、“C”、“D”哪一个等级的可能性大?请说明理由.
查看答案
在四川省发生地震后,成都运往汶川灾区的物资须从西线或南线运输,西线的路程约800千米,南线的路程约80千米,走南线的车队在西线车队出发18小时后立刻启程,结果两车队同时到达.已知两车队的行驶速度相同,求车队走西线所用的时间.
查看答案
如图,在△ABC中,点D,E分别是AB,AC边的中点,若把△ADE绕着点E顺时针旋转180°得到△CFE.
(1)请指出图中哪些线段与线段CF相等;
(2)试判断四边形DBCF是怎样的四边形,证明你的结论.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.