满分5 > 初中数学试题 >

如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐...

manfen5.com 满分网如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=manfen5.com 满分网+bx+c经过B点,且顶点在直线x=manfen5.com 满分网上.
(1)求抛物线对应的函数关系式;
(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的前提下,若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.
(1)已知了抛物线上A、B点的坐标以及抛物线的对称轴方程,可用待定系数法求出抛物线的解析式. (2)首先求出AB的长,将A、B的坐标向右平移AB个单位,即可得出C、D的坐标,再代入抛物线的解析式中进行验证即可. (3)根据C、D的坐标,易求得直线CD的解析式;那么线段MN的长实际是直线BC与抛物线的函数值的差,可将x=t代入两个函数的解析式中,得出的两函数值的差即为l的表达式,由此可求出l、t的函数关系式,根据所得函数的性质即可求出l取最大值时,点M的坐标. 【解析】 (1)∵抛物线y=+bx+c的顶点在直线x=上, ∴可设所求抛物线对应的函数关系式为y=+m(1分) ∵点B(0,4)在此抛物线上, ∴4=×+m ∴m=-(3分) ∴所求函数关系式为:y=-=-x+4(4分) (2)在Rt△ABO中,OA=3,OB=4, ∴AB==5 ∵四边形ABCD是菱形 ∴BC=CD=DA=AB=5(5分) ∴C、D两点的坐标分别是(5,4)、(2,0);(6分) 当x=5时,y=×52-×5+4=4 当x=2时,y=×22-×2+4=0 ∴点C和点D在所求抛物线上;(7分) (3)设直线CD对应的函数关系式为y=kx+b′, 则; 解得:; ∴y=x-(9分) ∵MN∥y轴,M点的横坐标为t, ∴N点的横坐标也为t; 则yM=-t+4,yN=t-,(10分) ∴l=yN-yM=t--(-t+4)=-+t-=-+ ∵-<0, ∴当t=时,l最大=,yM=-t+4=. 此时点M的坐标为(,).(12分)
复制答案
考点分析:
相关试题推荐
如图,以1为半径的⊙O1与以2为半径的⊙O2内切于点A,直线O1O2过点A,且交⊙O2于另一点B,⊙O2的弦PQ⊥O1O2,交O1O2于点K,且manfen5.com 满分网,PC∥O1O2,QD∥O1O2,PC、QD分别交过点O2的⊙O1的切线于点C、D.
(1)求圆心距O1O2
(2)求四边形PCDQ的边长;
(3)若一动点H由点Q出发,沿四边形的边QP、PC、CD移动到点D,设动点H移动的路程为x,△DQH的面积为y,求y与x之间的函数解析式,并写出自变量x的取值范围.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系xOy中,A点的坐标为(1,2),B点的坐标为(2,1).
(1)求△OAB的面积;
(2)若△OAB沿直线manfen5.com 满分网向下平移,使点A落在x轴上,画出平移后的三角形,求平移的距离及平移过程中△OAB所扫过的面积.

manfen5.com 满分网 查看答案
如图,AC是某市环城路的一段,AE、BF、CD都是南北方向的街道,其与环城路AC的交叉路口分别是A、B、C经测量,花卉世界D位于点A的北偏东45°方向,点B的北偏东30°方向上,AB=2km,∠DAC=15°.
(1)求∠ADB的大小;
(2)求B、D之间的距离;
(3)求C、D之间的距离.

manfen5.com 满分网 查看答案
某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.
(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?
(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?
(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?
查看答案
甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成如图1、图2的统计图.
(1)在图2中画出折线表示乙队在集训期内这五场比赛成绩的变化情况;
(2)已知甲队五场比赛成绩的平均分x=90分,请你计算乙队五场比赛成绩的平均分x
(3)就这五场比赛,分别计算两队成绩的极差;
(4)如果从甲、乙两队中选派一支球队参加篮球锦标赛,根据上述统计,从平均分、折线的走势、获胜场数和极差四个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成绩?
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.