满分5 > 初中数学试题 >

如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60度. (1)求⊙O的直径;...

如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60度.
manfen5.com 满分网
(1)求⊙O的直径;
(2)若D是AB延长线上一点,连接CD,当BD长为多少时,CD与⊙O相切;
(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为t(s)(0<t<2),连接EF,当t为何值时,△BEF为直角三角形.
(1)根据已知条件知:∠BAC=30°,已知AB的长,根据直角三角形中,30°锐角所对的直角边等于斜边的一半可得AB的长,即⊙O的直径; (2)根据切线的性质知:OC⊥CD,根据OC的长和∠COD的度数可将OD的长求出,进而可将BD的长求出; (3)应分两种情况进行讨论,当EF⊥BC时,△BEF为直角三角形,根据△BEF∽△BAC,可将时间t求出; 当EF⊥BA时,△BEF为直角三角形,根据△BEF∽△BCA,可将时间t求出. 【解析】 (1)∵AB是⊙O的直径, ∴∠ACB=90°; ∵∠ABC=60°, ∴∠BAC=180°-∠ACB-∠ABC=30°; ∴AB=2BC=4cm,即⊙O的直径为4cm. (2)如图(1)CD切⊙O于点C,连接OC,则OC=OB=×AB=2cm. ∴CD⊥CO;∴∠OCD=90°; ∵∠BAC=30°, ∴∠COD=2∠BAC=60°; ∴∠D=180°-∠COD-∠OCD=30°; ∴OD=2OC=4cm; ∴BD=OD-OB=4-2=2(cm); ∴当BD长为2cm,CD与⊙O相切. (3)根据题意得: BE=(4-2t)cm,BF=tcm; 如图(2)当EF⊥BC时,△BEF为直角三角形,此时△BEF∽△BAC; ∴BE:BA=BF:BC; 即:(4-2t):4=t:2; 解得:t=1; 如图(3)当EF⊥BA时,△BEF为直角三角形,此时△BEF∽△BCA; ∴BE:BC=BF:BA; 即:(4-2t):2=t:4; 解得:t=1.6; ∴当t=1s或t=1.6s时,△BEF为直角三角形.
复制答案
考点分析:
相关试题推荐
如图(1),凸四边形ABCD,如果点P满足∠APD=∠APB=α.且∠BPC=∠CPD=β,则称点P为四边形ABCD的一个半等角点.
(1)在图(3)正方形ABCD内画一个半等角点P,且满足α≠β;
(2)在图(4)四边形ABCD中画出一个半等角点P,保留画图痕迹(不需写出画法);
(3)若四边形ABCD有两个半等角点P1、P2(如图(2)),证明线段P1P2上任一点也是它的半等角点.
manfen5.com 满分网
查看答案
列方程或方程组解应用题:
世界上最长最快的高速铁路武广高速于2009年12月26日开通运营,预计高速列车在武汉、广州间单程直达运行时间为3小时.某次试车时,试验列车由武汉到广州的行驶时间比预计时间多用了36分钟,由广州返回武汉的行驶时间与预计时间相同.如果这次试车时,由广州返回武汉比去广州时平均每分钟多行驶1千米,那么这次试车时由武汉到广州的平均速度是每小时多少千米?
查看答案
一个不透明口袋中装有红球6个,黄球9个,绿球3个,这些球除颜色处没有任何其他区别现.从中任意摸出一个球.
(1)计算摸到的是绿球的概率.
(2)如果要使摸到绿球的概率为manfen5.com 满分网,需要在这个口袋中再放入多少个绿球?
查看答案
某品牌A、B两种不同型号的电视机是“家电下乡”活动的指定产品.利民家电超市该品牌A型电视机的售价为2400元/台,B型电视机的售价为2000元/台,如果农户到该家电超市购买这两种电视机,将获得20%的政府补贴.下面的图表是这家超市该品牌A、B两种不同型号的电视机近5周的每周销量统计图表.
A型电视机销量统计表
 时间(周) 1 3 4
 数量(台) 19 18 20 22 21
(1)农民购买一台A、B型号的电视机各需多少元?
(2)从统计图表中你获得了什么信息?(写2条)
(3)通过计算说明哪种型号的电视机销量较稳定?

manfen5.com 满分网 查看答案
如图,直线DE经过⊙O上的点C,并且OE=OD,EC=DC,⊙O交直线OD于A、B两点,连接BC,AC,OC.求证:
(1)OC⊥DE;
(2)△ACD∽△CBD.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.