满分5 > 初中数学试题 >

如图所示,对称轴为x=3的抛物线y=ax2+2x与x轴相交于点B,O. (1)求...

如图所示,对称轴为x=3的抛物线y=ax2+2x与x轴相交于点B,O.
(1)求抛物线的解析式,并求出顶点A的坐标;
(2)连接AB,把AB所在的直线平移,使它经过原点O,得到直线l.点P是l上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为t,当0<S≤18时,求t的取值范围;
(3)在(2)的条件下,当t取最大值时,抛物线上是否存在点Q,使△OPQ为直角三角形且OP为直角边?若存在,直接写出点Q的坐标;若不存在,说明理由.

manfen5.com 满分网
(1)根据抛物线的对称轴方程即可确定a的值,由此可得到抛物线的解析式,通过配方可求出顶点A的坐标; (2)根据A、B的坐标,易求得直线AB的解析式,进而可确定直线l的解析式,即可表示出P点的坐标;由于P点的位置不确定,因此本题要分成两种情况考虑: ①P点位于第四象限,此时t>0,四边形AOPB的面积可由△OAB和△OBP的面积和求得,由此可得到关于S、t的函数关系式,根据S的取值范围即可判断出t的取值范围; ②P点位于第二象限,此时t<0,可分别过A、P作x轴的垂线,设垂足为N、M;那么四边形AOPB的面积即可由梯形APMN与△ABN的面积和再减去△OPM的面积求得,由此可得到关于S、t的函数关系式,可参照①的方法求出t的取值范围; 结合上面两种情况即可得到符合条件的t的取值范围; (3)根据(2)的结论,可求出t的最大值,由此可得到P点的坐标;若△OPQ为直角三角形且OP为直角边,那么有两种情况需要考虑:①∠QOP=90°,②∠OPQ=90°; 可分别过Q、O作直线l的垂线m、n,由于互相垂直的两直线斜率的乘积为-1,根据直线l的解析式以及Q、O的坐标,即可求出直线m、n的解析式,联立抛物线的解析式即可求出Q点的坐标. 【解析】 (1)∵点B与O(0,0)关于x=3对称, ∴点B坐标为(6,0). 将点B坐标代入y=ax2+2x得: 36a+12=0; ∴a=. ∴抛物线解析式为.(2分) 当x=3时,; ∴顶点A坐标为(3,3).(3分) (说明:可用对称轴为,求a值,用顶点式求顶点A坐标) (2)设直线AB解析式为y=kx+b. ∵A(3,3),B(6,0), ∴ 解得, ∴y=-x+6. ∵直线l∥AB且过点O, ∴直线l解析式为y=-x. ∵点P是l上一动点且横坐标为t, ∴点P坐标为(t,-t).(4分) 当P在第四象限时(t>0), S=S△AOB+S△OBP =×6×3+×6×|-t| =9+3t. ∵0<S≤18, ∴0<9+3t≤18, ∴-3<t≤3. 又t>0, ∴0<t≤3.(5分) 当P在第二象限时(t<0), 作PM⊥x轴于M,设对称轴与x轴交点为N, 则S=S梯形ANMP+S△ANB-S△PMO = = =-3t+9; ∵0<S≤18, ∴0<-3t+9≤18, ∴-3≤t<3; 又t<0, ∴-3≤t<0;(6分) ∴t的取值范围是-3≤t<0或0<t≤3. (3)存在,点Q坐标为(3,3)或(6,0)或(-3,-9).(9分) 由(2)知t的最大值为3,则P(3,-3); 过O、P作直线m、n垂直于直线l; ∵直线l的解析式为y=-x, ∴直线m的解析式为y=x; 可设直线n的解析式为y=x+h,则有: 3+h=-3,h=-6; ∴直线n:y=x-6; 联立直线m与抛物线的解析式有: , 解得,; ∴Q1(3,3); 同理可联立直线n与抛物线的解析式,求得Q2(6,0),Q3(-3,-9). (说明:点Q坐标答对一个给1分)
复制答案
考点分析:
相关试题推荐
已知,如图,线段AB⊥BC,DC⊥BC,垂足分别为点B、C.
(1)当AB=6,DC=2,BC=8时,点P在线段BC运动,不与点B、C重合.
①若△ABP与△PCD可能全等,请直接写出manfen5.com 满分网的值;
②若△ABP与△PCD相似,求线段BP的长.
(2)探究:设AB=a,DC=b,AD=c,那么当a、b、c之间满足什么关系时,在直线BC上存在点P,使AP⊥PD?

manfen5.com 满分网 查看答案
2010年1月1日,全球第三大自贸区-中国-东盟自由贸易区正式成立,标志着该贸易区开始步入“零关税”时代,广西某民营边贸公司要把240顿白砂糖运往东盟某国的A,B两地,现用大,小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种火车的载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车630元/辆,小车420元/辆;运往B地的运费为:大车750元/辆,小车550元/辆.
(1)求这两种货车各用多少辆;
(2)如果安排10辆货车前往A地,其余货车前往B地,且运往A地的白砂糖不少于115吨,请你设计出使用总运费最少的货车调配方案,并求出最少总运费?
查看答案
我市在进行城南改造时,欲拆除河边的一根电线杆AB(如图),已知距电线杆AB水平距离16米处是河岸,即BD=16米,该河岸的坡面CD的坡角∠CDF的正切值为2(即tan∠CDF=2),岸高CF为4米,在坡顶C处测得杆顶A的仰角为30°,D、E之间是宽3米的人行道,请你通过计算说明在拆除电线杆AB时,为确保安全,是否将此人行道封上?(在地面上以点B为圆心、AB长为半径的圆形区域为危险区域,精确到0.1m)

manfen5.com 满分网 查看答案
在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.
(1)用树状图或列表法表示出(x,y)的所有可能出现的结果;
(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数y=manfen5.com 满分网的图象上的概率.
查看答案
某校九年级(1)班所有学生参加2010年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:
manfen5.com 满分网
(1)九年级(1)班参加体育测试的学生有______人;
(2)将条形统计图补充完整;
(3)在扇形统计图中,等级B部分所占的百分比是______,等级C对应的圆心角的度数为______
(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有______人.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.