如图,AB为⊙O的直径,PQ切⊙O于T,AC⊥PQ于C,交⊙O于D.
(1)求证:AT平分∠BAC;
(2)若AD=2,TC=
,求⊙O的半径.
考点分析:
相关试题推荐
如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的表达式.
(2)足球第一次落地点C距守门员多少米?(取4
=7)
(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取
=5)
查看答案
如图,正比例函数
的图象与反比例函数
(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上找一点P,使PA+PB最小.求P点坐标?
查看答案
我市某工艺品厂生产一款工艺品、已知这款工艺品的生产成本为每件60元.
经市场调研发现:该款工艺品每天的销售量y(件)与售价x(元)之间存在着如下表所示的一次函数关系.
售价x(元) | … | 70 | 90 | … |
销售量y(件) | … | 3000 | 1000 | … |
(利润=(售价-成本价)×销售量)
(1)求销售量y(件)与售价x(元)之间的函数关系式;
(2)你认为如何定价才能使工艺品厂每天获得的利润为40000元?
查看答案
如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.
(1)求证:BF=FD;
(2)∠A在什么范围内变化时,四边形ACFE是梯形,并说明理由;
(3)∠A在什么范围内变化时,线段DE上存在点G,满足条件DG=
DA,并说明理由.
查看答案
如图,海岛A四周20海里范围内是暗礁区,一艘货轮由东向西航行,在B处见岛A在北偏西60°,航行24海里后到C处,见岛A在北偏西30°,货轮继续向西航行,有无触礁危险?
查看答案