满分5 > 初中数学试题 >

如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、...

如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.
①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?
②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.

manfen5.com 满分网
(1)由于四边形ABCD为矩形,所以A点与D点纵坐标相同,A点与B点横坐标相同; (2)①根据相似三角形的性质求出点E的横坐标表达式即为点G的横作标表达式.代入二次函数解析式,求出纵标表达式,将线段最值问题转化为二次函数最值问题解答. ②若构成等腰三角形,则三条边中有两条边相等即可,于是可分EQ=QC,EC=CQ,EQ=EC三种情况讨论.若有两种情况时间相同,则三边长度相同,为等腰三角形. 【解析】 (1)因为点B的横坐标为4,点D的纵坐标为8,AD∥x轴,AB∥y轴,所以点A的坐标为(4,8). 将A(4,8)、C(8,0)两点坐标分别代入y=ax2+bx得, 解得a=-,b=4. 故抛物线的解析式为:y=-x2+4x; (2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即=. ∴PE=AP=t.PB=8-t. ∴点E的坐标为(4+t,8-t). ∴点G的纵坐标为:-(4+t)2+4(4+t)=-t2+8. ∴EG=-t2+8-(8-t)=-t2+t. ∵-<0,∴当t=4时,线段EG最长为2. ②共有三个时刻. (①)当EQ=QC时, 因为Q(8,t),E(4+t,8-t),QC=t, 所以根据两点间距离公式,得: (t-4)2+(8-2t)2=t2. 整理得13t2-144t+320=0, 解得t=或t==8(此时E、C重合,不能构成三角形,舍去). (②)当EC=CQ时, 因为E(4+t,8-t),C(8,0),QC=t, 所以根据两点间距离公式,得: (4+t-8)2+(8-t)2=t2. 整理得t2-80t+320=0,t=40-16,t=40+16>8(此时Q不在矩形的边上,舍去). (③)当EQ=EC时, 因为Q(8,t),E(4+t,8-t),C(8,0), 所以根据两点间距离公式,得:(t-4)2+(8-2t)2=(4+t-8)2+(8-t)2, 解得t=0(此时Q、C重合,不能构成三角形,舍去)或t=. 于是t1=,t2=,t3=40-16.
复制答案
考点分析:
相关试题推荐
如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.
(1)求证:①△AEF≌△BEC;②四边形BCFD是平行四边形;
(2)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,求sin∠ACH的值.
manfen5.com 满分网
查看答案
随着人民生活水平的不断提高,萧山区家庭轿车的拥有量逐年增加.据统计,家景园小区2008年底拥有家庭轿车144辆,2010年底家庭轿车的拥有量达到225辆.
(1)若该小区2008年底到2010年底家庭轿车拥有量的年平均增长率都相同,求该小区到2011年底家庭轿车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资25万元再建造若干个停车位.据测算,建造费用分别为室内车位6000元/个,露天车位2000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的3倍,但不超过室内车位的4.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.
查看答案
如图,A、B两点在函数manfen5.com 满分网的图象上.
(1)求k的值及直线AB的解析式;
(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中直线AB与双曲线所围部分(不包括边界)所含格点的个数.

manfen5.com 满分网 查看答案
青少年“心理健康”问题已引起了全社会的关注,学校对此问题极为重视.对全校600名学生进行了一次“心理健康”知识测试,并从中抽取了部分学生的成绩(得分取正数,满分100分)作为样本,绘制了下面尚为完成的频率分布直方表.
分组频数频率
50.5~60.520.04
60.5~70.580.16
70.5~80.510
80.5~90.5
90.5~100.50.28
合计1.00
请回答下列问题:
(1)填写频率分布直方表中的空格.
(2)若成绩在90分以上(不含90分)为优秀,试估计该校成绩优秀的有 ______人.
查看答案
每年的5月15日是”世界助残日”,我区时代超市门前的台阶共高出地面1.2米,为帮助残疾人,便于轮椅行走,准备拆除台阶换成斜坡,又考虑安全,轮椅行走斜坡的坡角不得超过9°,已知此商场门前的人行道距门前垂直距离为8米(斜坡不能修在人行道上),问此商场能否把台阶换成斜坡?(参考数据:sin9°=0.1564,cos9°=0.9877,tan9°=0.1584)
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.