满分5 > 初中数学试题 >

某地为促进特种水产养殖业的发展,决定对甲鱼和黄鳝的养殖提供政府补贴.该地某农户在...

某地为促进特种水产养殖业的发展,决定对甲鱼和黄鳝的养殖提供政府补贴.该地某农户在改建的10个1亩大小的水池里分别养殖甲鱼和黄鳝,因资金有限,投入不能超过14万元,并希望获得不低于10.8万元的收益,相关信息如下表所示:(收益=毛利润-成本+政府补贴)
养殖种类成本(万元/亩)毛利润(万元/亩)政府补贴(万元/亩)
甲鱼1.52.50.2
黄鳝11.80.1
(1)根据以上信息,该农户可以怎样安排养殖?
(2)应怎样安排养殖,可获得最大收益?
(3)据市场调查,在养殖成本不变的情况下,黄鳝的毛利润相对稳定,而每亩甲鱼的毛利润将减少m万元.问该农户又该如何安排养殖,才能获得最大收益?
(1)本题的等量关系是:养甲鱼的亩数+养黄鳝的亩数=10,养甲鱼的投入+养黄鳝的投入≤14万元;养黄鳝的利润+养甲鱼的利润≥10.8万元,以此列出不等式,求出自变量的取值范围; (2)可根据(1)得出的养殖方案进行比较看哪种获利最多; (3)让(2)中得出的三种方案的获利-甲鱼的贬值金额,然后再比较三种方案的新获利金额,看看当m在不同的情况下,哪种获利较多. 【解析】 (1)设养甲鱼x亩,养黄鳝y亩, 由题意可得:, (2.5-1.5+0.2)x+(1.8-1+0.1)y≥10.8, 解得:6≤x≤8,2≤y≤4. 因此可以有三种方案: ①养甲鱼6亩,黄鳝4亩; ②养甲鱼7亩,黄鳝3亩; ③养甲鱼8亩,黄鳝2亩. (2)方案一的收益为1.2×6+0.9×4=10.8(万元); 方案二的收益为1.2×7+0.9×3=11.1(万元); 方案三的收益为1.2×8+0.9×2=11.4(万元). ∴安排8个水池养甲鱼,2个水池养黄鳝获得最大收益. (3)方案一的收益为10.8-6m;方案二的收益为11.1-7m;方案三的收益为11.4-8m. 那么当m=0.3时三种方案收益都一样, 当m<0.3时,第三种方案即养8池甲鱼,2池黄鳝获利最多, 当m>0.3时,第一种方案即养6池甲鱼,4池黄鳝获利最多.
复制答案
考点分析:
相关试题推荐
我们把能平分四边形面积的直线称为“好线”.利用下面的作图,可以得到四边形的“好线”:在四边形ABCD中,取对角线BD的中点O,连接OA、OC.显然,折线AOC能平分四边形ABCD的面积,再过点O作OE∥AC交CD于E,则直线AE即为一条“好线”.
manfen5.com 满分网
(1)试说明直线AE是“好线”的理由;
(2)如下图,AE为一条“好线”,F为AD边上的一点,请作出经过F点的“好线”,并对画图作适当说明(不需要说明理由).
查看答案
如图所示,边长为2的等边三角形OAB的顶点A在x轴的正半轴上,B点位于第一象限,将△OAB绕O点顺时针旋转30°后,恰好A点在双曲线y=manfen5.com 满分网(x>0)上.
(1)求双曲线y=manfen5.com 满分网(x>0)的解析式;
(2)等边三角形OAB继续按顺时针方向旋转多少度后,A点再次落在双曲线上?

manfen5.com 满分网 查看答案
测量路灯的高度或河的宽度.
说明:①测量可以在有阳光的晴日里进行;
②测量者手头只有若干个标竿及测量长度的皮尺;
③画出相关图形,用a、b、c…等表示测量所得的数据.
题(1)小明和爸爸一起散步,发现小区新安装了漂亮的路灯.决定测量一下路灯的高度.请你帮小明设计一个测量方案;
题(2)小彬星期天到郊外游玩,来到一条不能到达对岸的河边,决定测量一下小河的宽度(河岸大致平行).请你帮助小彬设计一个测量方案.

manfen5.com 满分网 查看答案
(1)如图所示的转盘中指针落在每个数字上的机会相等,现同时转动A、B两转盘,停止后,指针各指向一个数字.小彬和小颖利用这个转盘做游戏:若两数之积为非负数则小彬胜,否则,小颖胜.你认为这个游戏对双方公平吗?______(直接写出结果)
(2)小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,小明在封闭图形内划出了一个半径为1米的圆,在不远处向圈内掷石子,且记录如下:
掷石子次数
石子落在的区域
 50次 150次 300次
石子落在
 
 14 43 93
石子落在阴影内的次数n 19 85 186
你能否求出封闭图形ABC的面积试试看.
manfen5.com 满分网

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网,其中manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.