(1)如图1,点P为矩形ABCD对角线的交点.请你完成以下作图:过点B作PA的平行线BPˊ,过点C作PD的平行线交BPˊ于点Pˊ,连接PPˊ;
(2)在(1)的条件下,判断PPˊ与BC的位置关系,并证明你的结论;
(3)如图2,若点P为矩形ABCD内任意一点.求证:以AP、BP、CP、DP为边可以构成一个四边形,该四边形的两条对角线分别等于线段AB和BC,且互相垂直.
考点分析:
相关试题推荐
如图,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(0,2),O(0,0),B(4,0),把△AOB绕点O逆时针方向旋转90°得到△COD(点A转到点C的位置),抛物线=ax
2+bx+c(a≠0)经过C、D、B三点.注:抛物线的顶点坐标为
(-
,
)
(1)求抛物线的解析式;
(2)若抛物线的顶点为P,△PAB的面积;
(3)在抛物线上是否存在点M,使△MBC的面积等于△PAB的面积?若存在,请求出点M的坐标;若不存在,请说明理由.
查看答案
已知:如图,△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD,垂足为E,连接AE.
(1)求证:DE=DA;
(2)图中有无相似三角形?若有,请写出一对,并证明;若没有,请说明理由;
(3)求△BEC与△AEB的面积之比.
查看答案
阅读理解,回答问题.
在解决数学问题的过程中,有时会遇到比较两数大小的问题,解决这类问题的关键是根据命题的题设和结论特征,采用相应办法,其中巧用“作差法”是解决此类问题的一种行之有效的方法:若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b.
例如:在比较m
2+1与m
2的大小时,小东同学的作法是:
∵(m
2+1)-(m
2)=m
2+1-m
2=1>0,
∴m
2+1>m
2.
请你参考小东同学的作法,解决如下问题:
(1)请你比较4
与(2+
)
2的大小;
(2)已知a、b为实数,且ab=1,设M=
+
,N=
+
,试比较M、N的大小;
(3)一天,小明爸爸的男同事来家做客,已知爸爸的年龄比小明年龄的平方大7岁,爸爸同事的年龄是小明年龄的5倍,请你帮忙算一算,小明该称呼爸爸的这位同事为“叔叔”还是“大伯”?
查看答案
八年级学生去距学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分后,其余同学乘汽车出发,结果他们同时到达,已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.
查看答案
已知:如图,△ABC中,∠B=90°,O是AB上一点,以点O为圆心,OB为半径的圆切AC于点D.
(1)求证:BC=CD;
(2)若AD=2,DC=3,求⊙O的半径;
(3)若点D关于AB的对称点为D′,试探究当点D满足什么条件时,四边形DD′BC为菱形.
查看答案