根据题意f(x+y)=f(x)•f(y);
令x=1,则有f(1+y)=f(1)•f(y)=3f(y);
先求得f(1)/f(0)=3;
f(2)/f(1)=3,f(3)/f(2)=3,…f(2004)/f(2003)=3;
把上述式子分别代入即可求得f(1)/f(0)+f(2)/f(1)+f(3)/f(2)+f(4)/f(3)+…+f(2003)/f(2002)+f(2004)/f(2003)=3×2004=6012.
【解析】
∵f(x+y)=f(x)•f(y);
令x=1,则有f(1+y)=f(1)•f(y)=3f(y);
故f(1)/f(0)=3;f(2)/f(1)=3,f(3)/f(2)=3,…f(2004)/f(2003)=3;
故f(1)/f(0)+f(2)/f(1)+f(3)/f(2)+f(4)/f(3)+…+f(2003)/f(2002)+f(2004)/f(2003)=3×2004=6012.