满分5 >
初中数学试题 >
如图是一个切去了一个角的正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸...
如图是一个切去了一个角的正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是( )
A.
B.
C.
D.
考点分析:
相关试题推荐
若直角三角形的两条直角边长为a,b,斜边长为c,斜边上的高为h,则有( )
A.ab=h
2B.
C.
D.a
2+b
2=2h
2
查看答案
已知:矩形ABCD(字母顺序如图)的边长AB=3,AD=2,将此矩形放在平面直角坐标系xOy中,使AB在x轴正半轴上,而矩形的其它两个顶点在第一象限,且直线y=
x-1经过这两个顶点中的一个.
(1)求出矩形的顶点A、B、C、D的坐标;
(2)以AB为直径作⊙M,经过A、B两点的抛物线,y=ax
2+bx+c的顶点是P点.
①若点P位于⊙M外侧且在矩形ABCD内部,求a的取值范围;
②过点C作⊙M的切线交AD于F点,当PF∥AB时,试判断抛物线与y轴的交点Q是位于直线y=
x-1的上方?还是下方?还是正好落在此直线上?并说明理由.
查看答案
为了迎接2002年世界杯足球赛的到来,某足球协会举办了一次足球联赛,其记分规则及奖励方案如下表
| 胜一场 | 平一场 | 负一场 |
积分 | 3 | 1 | |
奖励(元/每人) | 1500 | 700 | |
当比赛进行到第12轮结束(每队均需比赛12场)时,A队共积分19分.
(1)请通过计算,判断A队胜、平、负各几场;
(2)若每赛一场,每名参赛队员均得出场费500元,设A队其中一名参赛队员所得的奖金与出场费的和为W(元),试求W的最大值.
查看答案
已知抛物线y=x
2+2px+2p-2的顶点为M,
(1)求证抛物线与x轴必有两个不同交点;
(2)设抛物线与x轴的交点分别为A,B,求实数p的值使△ABM面积达到最小.
查看答案
如图,四边形ABCD内接于圆O,且AD是圆O的直径,DC与AB的延长线相交于E点,OC∥AB.
(1)求证:AD=AE;
(2)若OC=AB=4,求△BCE的面积.
查看答案