如图1,直线y=-
x+3与x轴相交于点A,与y轴相交于点B,点C(m,n)是第二象限内任意一点,以点C为圆心的圆与x轴相切于点E,与直线AB相切于点F.
(1)当四边形OBCE是矩形时,求点C的坐标;
(2)如图2,若⊙C与y轴相切于点D,求⊙C的半径r;
(3)求m与n之间的函数关系式;
(4)在⊙C的移动过程中,能否使△OEF是等边三角形(只回答“能”或“不能”)(沈阳05)
查看答案
为实现沈阳市森林城市建设的目标,在今年春季的绿化工作中,绿化办计划为某住宅小区购买并种植400株树苗.某树苗公司提供如下信息:
树苗 | 每棵树苗批发价格(元) | 两年后每棵树苗对空气的净化指数 |
杨树 | 3 | 0.4 |
丁香树 | 2 | 0.1 |
柳树 | p | 0.2 |
信息一:可供选择的树苗有杨树、丁香树、柳树三种,并且要求购买杨树、丁香树的数量相等.
信息二:如下表:设购买杨树、柳树分别为x株、y株.
(1)写出y与x之间的函数关系式(不要求写出自变量的取值范围);
(2)当每株柳树的批发价p等于3元时,要使这400株树苗两年后对该住宅小区的空气净化指数不低于90,应该怎样安排这三种树苗的购买数量,才能使购买树苗的总费用最低?最低的总费用是多少元?
(3)当每株柳树批发价p(元)与购买数量y(株)之间存在关系p=3-0.005y时,求购买树苗的总费用w(元)与购买杨树数量x(株)之间的函数关系式?(不要求写出自变量的取值范围)
查看答案
如图1,△ABC内接于⊙O,AD平分∠BAC,交直线BC于点E,交⊙O于点D.
(1)过点D作MN∥BC,求证:MN是⊙O切线;
(2)求证:AB•AC=AD•AE;
(3)如图2,AE平分∠BAC的外角∠FAC,交BC的延长线于点E,EA的延长线交⊙O于点D.结论AB•AC=AD•AE是否仍然成立?如果成立,请写出证明过程;如果不成立,请说明理由.
查看答案