满分5 > 初中数学试题 >

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分...

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE.
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=manfen5.com 满分网,BC=2,求⊙O的半径.

manfen5.com 满分网
(1)首先连接OE,由OE=OA与四边形ABCD是矩形,易求得∠DEC+∠OEA=90°,即OE⊥EC,即可证得直线CE与⊙O的位置关系是相切; (2)首先易证得△CDE∽△CBA,然后根据相似三角形的对应边成比例,即可求得DE的长,又由勾股定理即可求得AC的长,然后设OA为x,即可得方程()2-x2=(-x)2,解此方程即可求得⊙O的半径. 【解析】 (1)直线CE与⊙O相切.…(1分) 理由:连接OE, ∵四边形ABCD是矩形, ∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB,…(2分) ∴∠DCE+∠DEC=90°,∠ACB=∠DAC, 又∠DCE=∠ACB, ∴∠DEC+∠DAC=90°, ∵OE=OA, ∴∠OEA=∠DAC, ∴∠DEC+∠OEA=90°, ∴∠OEC=90°, ∴OE⊥EC,…(3分) ∴直线CE与⊙O相切;…(4分) (2)∵∠B=∠D,∠DCE=∠ACB, ∴△CDE∽△CBA,…(5分) ∴,…(6分) 又CD=AB=,BC=2, ∴DE=1 根据勾股定理得EC=, 又AC==,…(7分) 设OA为x,则()2+x2=(-x)2, 解得x=, ∴⊙O的半径为.…(8分)
复制答案
考点分析:
相关试题推荐
“石头、剪刀、布”是民间广为流传的游戏,游戏时,双方每次只能做“石头”、“剪刀”、“布”这三种手势中的一种.假定双方每次都是等可能的做这三种手势.
问:小强和小刚在一次游戏时,
(1)两个人同时出现“石头”手势的概率是多少?
(2)两个人出现不同手势的概率是多少?
查看答案
柑橘是我州的大产业,也是农民致富的大产业.我州近年来,通过各种途径,大力发展柑橘果业,柑橘总产量每年也在不断增加(如图所示).
(1)根据图中所提供的信息回答下列问题:2007年底的柑橘的总产量为______万吨,比2006年底增加了______%(百分号前保留一位小数),在所统计的这年中,增长速度最快的是______年;
(2)为满足市场发展的需要,计划到2011年底使柑橘总产量要达到121万吨,试计算明后两年柑橘的年平均增长率.
manfen5.com 满分网
查看答案
如图,在Rt△ABC中,∠C=90°,EF⊥AB于点F,交AC于点E,且AF=BF,若AB=10,manfen5.com 满分网.求线段EF长.

manfen5.com 满分网 查看答案
如图,在▱ABCD中,E,F分别是边AB,CD的中点,求证:AF=CE.

manfen5.com 满分网 查看答案
解方程:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.