作△ABC的内切圆,设O为圆心,r为半径,圆O与三边AB、BC、AC的切点依次为D、E、F,连接OA、OB、OC、OD、OE、OF,则OA、OB、OC平分△ABC的三个内角.根据正切函数的定义及已知条件,可得BD=1,然后根据切线长定理即可求出a+c的值.
【解析】
如图,作△ABC的内切圆,设O为圆心,r为半径,圆O与三边AB、BC、AC的切点依次为D、E、F,连接OA、OB、OC、OD、OE、OF.
则tan=,tan=,tan=.
∵,
∴+=,
∴AF+CF=4BD,即AC=4BD,
又∵b=AC=4,
∴BD=1,
∴BE=BD=1,
∴a+c=(BE+CE)+(BD+AD)=(CE+AD)+(BE+BD)=b+2BD=6.
故答案为6.