满分5 > 初中数学试题 >

如图1,已知Rt△ABC中,∠CAB=30°,BC=5.过点A作AE⊥AB,且A...

如图1,已知Rt△ABC中,∠CAB=30°,BC=5.过点A作AE⊥AB,且AE=15,连接BE交AC于点P.
(1)求PA的长;
(2)以点A为圆心,AP为半径作⊙A,试判断BE与⊙A是否相切,并说明理由;
(3)如图2,过点C作CD⊥AE,垂足为D.以点A为圆心,r为半径作⊙A;以点C为圆心,R为半径作⊙C.若r和R的大小是可变化的,并且在变化过程中保持⊙A和⊙C相切,且使D点在⊙A的内部,B点在⊙A的外部,求r和R的变化范围.
manfen5.com 满分网
(1)根据已知,可判定△APE∽△CPB,从而得到相似比为PA:PC=AE:BC=3:1; (2)BE与⊙A相切,通过已知,可求得∠ABE=60°,从而可得到∠APB=90°,即BE与⊙A相切; (3)已知AD=5,AB=5,所以r的变化范围为5<r<5.因为没有说明两圆是内切还是外切,所以分两种情况进行分析. 【解析】 (1)∵在Rt△ABC中,∠CAB=30°,BC=5, ∴AC=2BC=10; ∵AE∥BC, ∴△APE∽△CPB, ∴PA:PC=AE:BC=3:1, ∴PA:AC=3:4,PA=. (2)BE与⊙A相切; ∵在Rt△ABE中,AB=5,AE=15, ∴tan∠ABE=, ∴∠ABE=60°; 又∵∠PAB=30°, ∴∠ABE+∠PAB=90°, ∴∠APB=90°, ∴BE⊥AP ∴BE与⊙A相切; (3)因为AD=5,AB=5,所以r的变化范围为5<r<5; 当⊙A与⊙C外切时,R+r=10,所以R的变化范围为10-<R<5; 当⊙A与⊙C内切时,R-r=10,所以R的变化范围为15<R<10+5.
复制答案
考点分析:
相关试题推荐
如图,顶点为D的抛物线y=x2+bx-3与x轴相交于A、B两点,与y轴相交于点C,连接BC,已知tan∠ABC=1.
(1)求点B的坐标及抛物线y=x2+bx-3的解析式;
(2)在x轴上找一点P,使△CDP的周长最小,并求出点P的坐标;
(3)若点E(x,y)是抛物线上不同于A,B,C的任意一点,设以A,B,C,E为顶点的四边形的面积为S,求S与x之间的函数关系式.

manfen5.com 满分网 查看答案
某商场经销甲、乙两种商品,每件进价分别为15元、35元,售价分别为20元、45元.
(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进这两种商品各多少件?
(2)该商场为使甲、乙两种商品共100件的总利润不少于750元,且不超过760元,请你帮该商场设计相应的进货方案.
(3)在节日期间,该商场对这两种商品进行如下优惠促销活动:
打折前一次性购物总金额优惠措施
不超过300元不优惠
超过300元但不超过400元售价打九折
超过400元售价打八折
按上述优惠条件,若小王第一天只购买甲商品一次性付款200元,第二天只购买乙商品一次性付款324元,那么他在该商场购买甲、乙两种商品一共多少件?
查看答案
(1)在同一个圆中,两条弦相交,被交点分成的两条线段的积有什么关系?请利用左图试着证明.
(2)利用(1)的结论,解决右图问题:AB为⊙O的弦,P是AB上一点,AB=10,PA=4,OP=5,求⊙O的半径R.
manfen5.com 满分网
查看答案
今年的全国助残日这天,某单位的青年志愿者到距单位6千米的福利院参加“爱心捐助活动”.一部分人步行,另一部分人骑自行车,他们沿相同的路线前往.如图,l1、l2分别表示步行和骑自行车的人前往目的地所走的路程y(千米)随时间x(分钟)变化的函数图象.
(1)分别求l1、l2的函数表达式;
(2)求骑车的人用多长时间追上步行的人.

manfen5.com 满分网 查看答案
某鱼塘放养鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每鱼重2.5千克,第二网捞出25条,称得平均每条鱼2.2千克,第三网捞出35条,称得平均每条重2.8千克,试估计这塘鱼的总重量.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.