实践操作题:把一个等腰直角三角形ABC沿斜边上的高线CD(裁剪线)剪一刀,从这个三角形裁下一部分,与剩下部分能拼成一个平行四边形A′BCD(见示意图1).(以下探究过程中有画图要求的,工具不限,不必写画法和证明).
探究一:
(1)想一想:判断四边形A′BCD是平行四边形的依据是______;
(2)做一做:按上述的裁剪方法,请你拼一个与图1位置或形状不同的平行四边形,并在图2中画出示意图.
探究二:
在等腰直角三角形ABC中,请你找出其它的裁剪线,把分割成的两部分拼出不同类型的特殊四边形.
(1)试一试:你能拼出所有不同类型的特殊四边形有______;它们的裁剪线分别是______
考点分析:
相关试题推荐
一列火车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),该列火车挂有一节邮政车厢,运行时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发往下面行程中每个车站的邮包一个.
例如,当列车停靠在第x个车站时,邮政车厢上需要卸下已经通过的(x-1)个车站发给该站的邮包共(x-1)个,还要装上下面行程中要停靠的(n-x)个车站的邮包共(n-x)个.
(1)根据题意,完成下表:
车站序号 | 在第x个车站起程时邮政车厢邮包总数 |
1 | n-1 |
2 | (n-1)-1+(n-2)=2(n-2) |
3 | 2(n-2)-2+(n-3)=3(n-3) |
4 | |
5 | |
… | … |
n | |
(2)根据上表,写出列车在第x车站启程时,邮政车厢上共有邮包的个数y(用x、n表示);
(3)当n=18时,列车在第几个车站启程时邮政车厢上邮包的个数最多?
查看答案
在网格网中按要求画出图形,并回答问题:
(1)先画出△ABC向下平移5格后的△A
1B
1C
1,再画出△ABC以点O为旋转中心,沿顺时针方向旋转90°后的△A
2B
2C
2;
(2)在同学交流时,你打算如何描述(1)中所画的△A
2B
2C
2的位置.
查看答案
一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车.已知过去两次租用这两种货车的情况如下表:
| 第一次 | 第二次 |
甲种货车辆数(辆) | 2 | 5 |
乙种货车辆数(辆) | 3 | 6 |
累计运货吨数(吨) | 15.5 | 35 |
现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,则货主应付运费多少元?
查看答案
如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.
查看答案
下面是两位学生的探讨过程:学习了等腰三角形内容后,李老师布置了一道题:等腰三角形上的高与另一腰的夹角为30°,求顶角的度数.
小王说:“顶角的度数应为60°”;小张说:“应该等于120°吧”.这时许多同学一起来议论…
(1)假如你也参加了讨论,你的意见如何?为什么?
(2)通过上面问题的讨论,结合平时的学习,写写自己的想法.(用一句话表示)
查看答案