满分5 > 初中数学试题 >

如图,已知二次函数y=x2-2x-1的图象的顶点为A.二次函数y=ax2+bx的...

如图,已知二次函数y=x2-2x-1的图象的顶点为A.二次函数y=ax2+bx的图象与x轴交于原点O及另一点C,它的顶点B在函数y=x2-2x-1的图象的对称轴上.
(1)求点A与点C的坐标;
(2)当四边形AOBC为菱形时,求函数y=ax2+bx的关系式.

manfen5.com 满分网
(1)二次函数y=ax2+bx的顶点在已知二次函数抛物线的对称轴上,可知两个函数对称轴相等,因此先根据已知函数求出对称轴. y=x2-2x-1=(x-1)2-2,所以顶点A的坐标为(1,-2)对称轴为x=1, 所以二次函数y=ax2+bx关于x=1对称,且函数与x轴的交点分别是原点和C点, 所以点C和点O关于直线l对称,所以点C的坐标为(2,0); (2)因为四边形AOBC是菱形,根据菱形性质,可以得出点O和点C关于直线AB对称,点B和点A关于直线OC对称,因此,可求出点B的坐标,点B的坐标为(1,2), 二次函数y=ax2+bx的图象经过点B(1,2),C(2,0),将B,C代入解析式,可得,, 解得,所以二次函数y=ax2+bx的关系式为y=-2x2+4x. 【解析】 (1)∵y=x2-2x-1=(x-1)2-2, ∴顶点A的坐标为(1,-2). ∵二次函数y=ax2+bx的图象与x轴交于原点O及另一点C,它的顶点B在函数y=x2-2x-1的图象的对称轴上. ∴二次函数y=ax2+bx的对称轴为:直线x=1, ∴点C和点O关于直线x=1对称, ∴点C的坐标为(2,0). (2)因为四边形AOBC是菱形,所以点B和点A关于直线OC对称, 因此,点B的坐标为(1,2). 因为二次函数y=ax2+bx的图象经过点B(1,2),C(2,0), 所以, 解得, 所以二次函数y=ax2+bx的关系式为y=-2x2+4x.
复制答案
考点分析:
相关试题推荐
绿谷商场“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:
类别冰箱彩电
进价(元/台)2 3201 900
售价(元/台)2 4201 980
(1)按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的政府补贴?
(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台,且冰箱的数量不少于彩电数量的manfen5.com 满分网
①请你帮助该商场设计相应的进货方案;
②哪种进货方案商场获得利润最大(利润=售价-进价),最大利润是多少?
查看答案
已知三角形的三边长,求三角形面积,有公式:S=manfen5.com 满分网(其中a、b、c为三角形的三边长,S为面积,其中p=manfen5.com 满分网).
(1)若已知三角形的三边长分别为2、3、4,试运用公式,计算该三角形的面积S;
(2)现在我们不用以上的公式计算,而运用初中学过的数学知识计算,你能做到吗?请试试.如图,△ABC中AB=7,AC=5,BC=8,求△ABC的面积.(提示:作高AD,设CD=x)

manfen5.com 满分网 查看答案
四边形ABCD为矩形纸片,把纸片ABCD折叠,使B恰好落在CD边的中点E处,折痕为AF,若CD=6,求BF的长.

manfen5.com 满分网 查看答案
为迎接国庆60周年,某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整理参赛同学的成绩,并制作成图表如下:
分数段频数频率
60≤x<70300.15
70≤x<80m0.45
80≤x<9060n
90≤x<100200.1
请根据以上图表提供的信息,解答下列问题:
(1)表中m和n所表示的数分别为:m=______,n=______
(2)请在图中,补全频数分布直方图;
(3)比赛成绩的中位数落在哪个分数段;
(4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,DC∥AB,DA=CB.若AB=10,DC=4,tanA=2,求这个梯形的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.