满分5 > 初中数学试题 >

如图,在平面直角坐标系中,⊙M与x轴交于A,B两点,AC是⊙M的直径,过点C的直...

如图,在平面直角坐标系中,⊙M与x轴交于A,B两点,AC是⊙M的直径,过点C的直线交x轴于点D,连接BC,已知点M的坐标为manfen5.com 满分网,直线CD的函数解析式为y=-manfen5.com 满分网x+5manfen5.com 满分网
(1)求点D的坐标和BC的长;
(2)求点C的坐标和⊙M的半径;
(3)求证:CD是⊙M的切线.

manfen5.com 满分网
(1)因为点M的坐标为,直线CD的函数解析式为y=-x+5,D在x轴上,可求出OM=,D(5,0),又因过圆心M的直径⊥AB,AC是直径,利用垂径定理可得OA=OB,AM=MC,∠ABC=90°,利用三角形的中位线可得OM=BC,BC=2; (2)因为BC=2,所以可设C(x,2),利用直线CD的函数解析式为y=-x+5.可得到y=-x+5=2,即求出C(3,2),利用勾股定理可得AC==,即⊙M的半径为2; (3)求出BD=5-3=2,BC=,CD==4,AC=4,AD=8,CD=4,,可得△ACD∽△CBD, 所以∠CBD=∠ACD=90°,CD是⊙M的切线. (1)【解析】 ∵点M的坐标为,直线CD的函数解析式为y=-x+5,D在x轴上, ∴OM=,D(5,0); ∵过圆心M的直径⊥AB,AC是直径, ∴OA=OB,AM=MC,∠ABC=90°, ∴OM=BC, ∴BC=2. (2)【解析】 ∵BC=2, ∴设C(x,2); ∵直线CD的函数解析式为y=-x+5, ∴y=-x+5=2, ∴x=3,即C(3,2), ∵CB⊥x轴,OB=3, ∴AO=3,AB=6,AC==, 即⊙M的半径为2. (3)证明:∵BD=5-3=2,BC=,CD==4, AC=4,AD=8,CD=4, ∴, ∴△ACD∽△CBD, ∴∠CBD=∠ACD=90°; ∵AC是直径, ∴CD是⊙M的切线.
复制答案
考点分析:
相关试题推荐
如图,已知二次函数y=x2-2x-1的图象的顶点为A.二次函数y=ax2+bx的图象与x轴交于原点O及另一点C,它的顶点B在函数y=x2-2x-1的图象的对称轴上.
(1)求点A与点C的坐标;
(2)当四边形AOBC为菱形时,求函数y=ax2+bx的关系式.

manfen5.com 满分网 查看答案
绿谷商场“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:
类别冰箱彩电
进价(元/台)2 3201 900
售价(元/台)2 4201 980
(1)按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的政府补贴?
(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台,且冰箱的数量不少于彩电数量的manfen5.com 满分网
①请你帮助该商场设计相应的进货方案;
②哪种进货方案商场获得利润最大(利润=售价-进价),最大利润是多少?
查看答案
已知三角形的三边长,求三角形面积,有公式:S=manfen5.com 满分网(其中a、b、c为三角形的三边长,S为面积,其中p=manfen5.com 满分网).
(1)若已知三角形的三边长分别为2、3、4,试运用公式,计算该三角形的面积S;
(2)现在我们不用以上的公式计算,而运用初中学过的数学知识计算,你能做到吗?请试试.如图,△ABC中AB=7,AC=5,BC=8,求△ABC的面积.(提示:作高AD,设CD=x)

manfen5.com 满分网 查看答案
四边形ABCD为矩形纸片,把纸片ABCD折叠,使B恰好落在CD边的中点E处,折痕为AF,若CD=6,求BF的长.

manfen5.com 满分网 查看答案
为迎接国庆60周年,某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整理参赛同学的成绩,并制作成图表如下:
分数段频数频率
60≤x<70300.15
70≤x<80m0.45
80≤x<9060n
90≤x<100200.1
请根据以上图表提供的信息,解答下列问题:
(1)表中m和n所表示的数分别为:m=______,n=______
(2)请在图中,补全频数分布直方图;
(3)比赛成绩的中位数落在哪个分数段;
(4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.