如图,四边形OBCD为平行四边形,OD=2,∠DOB=60°,以OD为直径的⊙P经过点B,N为BC上任意一点(与B、C不重合),过N作直线MN⊥x轴,垂足为A,MN交DC于M,设OA=t,OMN的面积为S.
(1)求出D、B、C点的坐标和过B、C两点的一次函数的解析式.
(2)求S与t之间的函数关系式及t的范围.
(3)当S=
时,试判定直线MN与⊙P的位置关系.
查看答案
某班同学到野外活动,为测量一池塘两端A、B的距离,设计了几种方案,下面介绍两种:
(I)如图(1),先在平地取一个可以直接到达A、B的点C,并分别延长AC到D,BC到E,使DC=AC,BC=EC,最后测出DE的距离即为AB的长.
(II)如图(2),先过B点作AB的垂线BF,再在BF上取C、D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.
阅读后回答下列问题:
(1)方案(I)是否可行?______,理由是______;
(2)方案(II)是否切实可行?______,理由是______.
(3)方案(II)中作BF⊥AB,ED⊥BF的目的是______;若仅满足∠ABD=∠BDE≠90°,方案(II)是否成立?
(4)方案(II)中,若使BC=n•CD,能否测得(或求出)AB的长?理由是______,若ED=m,则AB=______.
查看答案