满分5 > 初中数学试题 >

某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090...

某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:
 AB
成本(万元/套)2528
售价(万元/套)3034
(1)该公司对这两种户型住房有哪几种建房方案?
(2)该公司如何建房获得利润最大?
(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?
注:利润=售价-成本.
(1)根据“该公司所筹资金不少于2090万元,但不超过2096万元”,列出不等式进行求解,确定建房方案; (2)根据:利润=售价-成本,利润就可以写成关于x的函数,根据函数的性质,就可以求出函数的最大值; (3)利润W可以用含a的代数式表示出来,对a进行分类讨论. 【解析】 (1)设A种户型的住房建x套,则B种户型的住房建(80-x)套. 由题意知2090≤25x+28(80-x)≤2096 解得48≤x≤50 ∵x取非负整数,∴x为48,49,50. ∴有三种建房方案: 方案一:A种户型的住房建48套,B种户型的住房建32套, 方案二:A种户型的住房建49套,B种户型的住房建31套, 方案三:A种户型的住房建50套,B种户型的住房建30套; (2)设该公司建房获得利润W(万元). 由题意知W=(30-25)x+(34-28)(80-x)=5x+6(80-x)=480-x, ∴当x=48时,W最大=432(万元) 即A型住房48套,B型住房32套获得利润最大; (3)由题意知W=(5+a)x+6(80-x) =480+(a-1)x ∴当0<a<1时,x=48,W最大,即A型住房建48套,B型住房建32套. 当a=1时,a-1=0,三种建房方案获得利润相等. 当a>1时,x=50,W最大,即A型住房建50套,B型住房建30套.
复制答案
考点分析:
相关试题推荐
(1)计算:-2-2+3manfen5.com 满分网+manfen5.com 满分网-manfen5.com 满分网
(2)先化简,再求值:manfen5.com 满分网,其中a2-a=0.
查看答案
如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△A5B5C5,则其面积S5=   
manfen5.com 满分网 查看答案
如图,直线x=1是二次函数y=ax2+bx+c的图象的对称轴,则①a+b+c>0,②b<a+c,③abc<0,④2a=b中正确的是    .(请把正确的序号填上)
manfen5.com 满分网 查看答案
如图,在菱形ABCD中,∠A=100°,M、N分别是边AB、BC的中点,MP⊥CD于点P.则∠NPC的度数为   
manfen5.com 满分网 查看答案
实数x、y满足x2-2x-4y=5,记t=x-2y,则t的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.