定义{a,b,c}为函数y=ax
2+bx+c的“特征数”.如:函数y=x
2-2x+3的“特征数”是{1,-2,3},函数y=2x+3的“特征数”是{0,2,3},函数y=-x的“特征数”是{0,-1,0}
(1)将“特征数”是
的函数图象向下平移2个单位,得到一个新函数,这个新函数的解析式是y=
;
(2)在(1)中,平移前后的两个函数分别与y轴交于A、B两点,与直线x=
分别交于D、C两点,判断以A、B、C、D四点为顶点的四边形形状,请说明理由并计算其周长;
(3)若(2)中的四边形与“特征数”是
的函数图象的有交点,求满足条件的实数b的取值范围.
考点分析:
相关试题推荐
有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30度.
(1)试探究线段BD与线段MF的关系,并简要说明理由;
(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB
1D
1,AD
1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,请直接写出旋转角β的度数;
(3)若将△AFM沿AB方向平移得到△A
2F
2M
2(如图3),F
2M
2与AD交于点P,A
2M
2与BD交于点N,当NP∥AB时,求平移的距离是多少?
查看答案
如图,在平面直角坐标系中,A,B两点的坐标分别为(0,-2),(0,8),以AB为一边作正方形ABCD,再以CD为直径的半圆P.设x轴交半圆P于点E,交边CD于点F.
(1)求线段EF的长;
(2)连接BE,试判断直线BE与⊙P的位置关系,并说明你的理由;
(3)直线BE上是否存在着点Q,使得以Q为圆心、r为半径的圆,既与y轴相切又与⊙P外切?若存在,试求r的值;若不存在,请说明理由.
查看答案
为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.
(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?
(2)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?
查看答案
某小区共有5000个家庭,为了了解辖区居民的住房情况,居民委员会随机调查了本辖区内一定数量的家庭的住房面积,并将调查的数据绘制成直方图和扇形图.
请你根据以上不完整的直方图和扇形图提供的信息,解答下列问题:
(1)这次共调查了多少个家庭的住房面积扇形图中的a、b的值分别是多少?
(2)补全频率分布直方图;
(3)被调查的家庭中,在未来5年内,计划购买第二套住房的家庭统计如下表:
住房面积(m2) | ≤40 | 40~70 | 70~100 | 100~130 | 130~160 | >160 |
| 1 | | | | | |
根据这次调查,估计本小区在未来的5年内,共有多少个家庭计划购买第二套住房?
查看答案
(1)计算:
;
(2)先化简,再选择一个合适的x值代入求值:
.
查看答案