满分5 > 初中数学试题 >

若有二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x...

若有二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x=x1+x2时,函数值为( )
A.a+c
B.a-c
C.-c
D.c
先找出二次函数y=ax2+c的对称轴是y轴,再找x=0时的函数值即可. 【解析】 二次函数y=ax2+c的对称轴是y轴,当x取x1,x2(x1≠x2)时,函数值相等,即以x1,x2为横坐标的点关于y轴对称,则x1+x2=0,此时函数值为y=ax2+c=0+c=c. 故选D.
复制答案
考点分析:
相关试题推荐
小明和爸爸妈妈三人玩跷跷板.三人的体重一共为150千克,爸爸坐在跷跷板的一端,体重只有妈妈一半的小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地.那么小明的体重应小于( )
manfen5.com 满分网
A.49千克
B.50千克
C.24千克
D.25千克
查看答案
若代数式manfen5.com 满分网+manfen5.com 满分网的值为2,则a的取值范围是( )
A.a≥4
B.a≤2
C.2≤a≤4
D.a=2或a=4
查看答案
若⊙O1的圆心坐标为(2,0),半径为1;⊙O2的圆心坐标为(-1,0),半径为3,则这两圆的位置关系是( )
A.相交
B.相切
C.相离
D.内含
查看答案
已知抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(O,4),与x轴交于点A、B,点A的坐标为(4,0)
(1)求该抛物线解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接OQ,当△OQE的面积最大时,求Q点坐标;
(3)作平行于x轴的直线MN交抛物线于M、N点,以线段MN的长为直径作圆,当直线MN运动到何处时,以线段MN为直径的圆与X轴相切?写出过程;
(4)线段CA上的动点P自C向A以每秒manfen5.com 满分网单位长度运动,同时线段AB上动点Q自A向B以每秒1个单位长度运动,当点P到达A点时,P、Q两点都停止运动.设运动时间为t秒,当t为何值时,以A、P、Q为顶点的三角形与△ABC相似?
manfen5.com 满分网
查看答案
小王家是新农村建设中涌现出的“养殖专业户”.他准备购置80只相同规格的网箱,养殖A、B两种淡水鱼(两种鱼不能混养).计划用于养鱼的总投资不少于7万元,但不超过7.2万元,其中购置网箱等基础建设需要1.2万元.设他用x只网箱养殖A种淡水鱼,目前平均每只网箱养殖A、B两种淡水鱼所需投入及产业情况如下表:

项目类别
鱼苗投资
(百元)
饲料支出
(百元)
收获成品鱼(千克)成品鱼价格
(百元/千克)
A种鱼2.331000.1
B种鱼45.5550.4
(1)小王有哪几种养殖方式?
(2)哪种养殖方案获得的利润最大?
(3)根据市场调查分析,当他的鱼上市时,两种鱼的价格会有所变化,A种鱼价格上涨a%(0<a<50),B种鱼价格下降20%,考虑市场变化,哪种方案获得的利润最大?(利润=收入-支出.收入指成品鱼收益,支出包括基础建设投入、鱼苗投资及饲料支出)
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.