阅读材料,解答问题:
命题:如图,在锐角△ABC中,BC=a,CA=b,AB=c,△ABC的外接圆半径为R,则
=
=
=2R.
证明:连接CO并延长交⊙O于点D,连接DB,则∠D=∠A.
因为CD是⊙O的直径,所以∠DBC=90°,
在Rt△DBC中,sin∠D=
=
,
所以sinA=
,即
=2R,
同理:
=2R,
=2R,
=
=
=2R,
请阅读前面所给的命题和证明后,完成下面(1)(2)两题:
(1)前面阅读材料中省略了“
=2R,
=2R”的证明过程,请你把“
=2R”的证明过程补写出来.
(2)直接运用阅读材料中命题的结论解题,已知锐角△ABC中,BC=
,CA=
,∠A=60°,求△ABC的外接圆半径R及∠C.
考点分析:
相关试题推荐
当m是什么整数时,关于x的一元二次方程mx
2-4x+4=0与x
2-4mx+4m
2-4m-5=0的解都是整数?
查看答案
某书店老板去批发市场购买某种图书.第一次购书用100元,按该书定价2.8元出售,并很快售完.由于该书畅销,第二次购书时,每本的批发价已比第一次高0.5元,用去了150元,所购数量比第一次多10本.当这批书售出
时,出现滞销,便以定价5折售完剩余图书.问该店老板第二次售书是赔钱了,还是赚钱了(不考虑其他因素)?赔(或赚)多少钱?
查看答案
有两个可以自由转动的均匀转盘A、B,分别被分成4等份、3等份,并在每份内均标有数字,如图所示,丁洋和王倩同学用这两个转盘做游戏,游戏规则如下:①分别转动转盘A和B;②两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止);③如果和为0,丁洋获胜,否则,王倩获胜.
(1)用列表法(或树状图)求丁洋获胜的概率;
(2)你认为这个游戏对双方公平吗?请说明理由.
查看答案
如图是一座人行天桥的示意图,天桥的高是10米,坡面的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面的倾斜角为30°,若新坡角下需留3米的人行道,问离原坡角10米的建筑物是否需要拆除?(参考数据:
≈1.414,
≈1.732.)
查看答案
一次函数y=3x+m与反比例函数y=
的图象有两个交点,
(1)当m为何值时,有一个交点的纵坐标为6?
(2)在(1)的条件下,求两个交点的坐标.
查看答案