满分5 > 初中数学试题 >

如图1,在平面直角坐标系中,点B在直线y=2x上,过点B作x轴的垂线,垂足为A,...

如图1,在平面直角坐标系中,点B在直线y=2x上,过点B作x轴的垂线,垂足为A,OA=5.若抛物线manfen5.com 满分网过点O、A两点.
(1)求该抛物线的解析式;
(2)若A点关于直线y=2x的对称点为C,判断点C是否在该抛物线上,并说明理由;
(3)如图2,在(2)的条件下,⊙O1是以BC为直径的圆.过原点O作O1的切线OP,P为切点(P与点C不重合),抛物线上是否存在点Q,使得以PQ为直径的圆与O1相切?若存在,求出点Q的横坐标;若不存在,请说明理由.
manfen5.com 满分网
(1)将O、A的坐标代入抛物线的解析式中,即可求得待定系数的值; (2)根据A点的坐标和直线OB的解析式可求出B点的坐标,进而可求出OA、AB、OB的长;设AC与OB的交点为E,连接OC,由于A、C关于OB对称,那么OB垂直平分线段AC,则有BC=AB,AE=CE,OA=OC,由此可求出OC、BC的长,在Rt△BCO中,根据直角三角形面积的不同表示方法,可求出CE的长,进而可得到AC的长;过C作CD⊥x轴于D,易证得△CDA∽△OAB,根据相似三角形的对应边成比例,即可求出AD、CD的长,从而得到C点的坐标;然后将C点坐标代入抛物线的解析式中进行验证即可; (3)在(2)中已经证得BC⊥OC,则OC是⊙O1的切线,由于P、C不重合,所以P点在第一象限;连接O1P,若存在符合条件的Q点,那么点Q必为直线O1P与抛物线的交点,所以解决此题的关键是求出O1、P的坐标;过O1作O1H⊥x轴于H,则O1H是梯形CDAB的中位线,易得AH=DH=AD,由此可得求出AH、DH的长,进而可求出OH的长,根据梯形中位线定理即可得到O1H的长,由此可求出点O1的坐标;过P作PF⊥x轴于F,由于OC、OP都是圆的切线,则OC=OP=O1C=O1P=5,由此可得四边形OCO1P是正方形,得∠POC=90°,根据等角的余角相等,可证得∠OCD=∠POF,由此可证得△POF≌△COD,即可得到PF、OF的长,也就得出了P点的坐标,然后用待定系数法即可求出直线O1P的解析式,联立抛物线的解析式,即可得到Q点的横坐标. 【解析】 (1)把O(0,0)、A(5,0)分别代入y=x2+bx+c, 得, 解得; ∴该抛物线的解析式为y=x2-x; (2)点C在该抛物线上. 理由:过点C作CD⊥x轴于点D,连接OC,设AC交OB于点E ∵点B在直线y=2x上, ∴B(5,10) ∵点A、C关于直线y=2x对称, ∴OB⊥AC,CE=AE,BC⊥OC,OC=OA=5,BC=BA=10 又∵AB⊥x轴,由勾股定理得OB=5 ∵SRt△OAB=AE•OB=OA•AB ∴AE=2,∴AC=4; ∵∠OBA+∠CAB=90°,∠CAD+∠CAB=90°, ∴∠CAD=∠OBA; 又∵∠CDA=∠OAB=90°, ∴△CDA∽△OAB ∴==; ∴CD=4,AD=8; ∴C(-3,4) 当x=-3时,y=×9-×(-3)=4; ∴点C在抛物线y=x2-x上; (3)抛物线上存在点Q,使得以PQ为直径的圆与⊙O1相切; 过点P作PF⊥x轴于点F,连接O1P,过点O1作O1H⊥x轴于点H; ∵CD∥O1H∥BA ∴C(-3,4),B(5,10) 又∵O1是BC的中点, ∴由平行线分线段成比例定理得AH=DH=AD=4, ∴OH=OA-AH=1,同理可得O1H=7, ∴点O1的坐标为(1,7) ∵BC⊥OC,∴OC为⊙O1的切线; 又∵OP为⊙O1的切线, ∴OC=OP=O1C=O1P=5 ∴四边形OPO1C为正方形, ∴∠POF=∠OCD 又∵∠PFO=∠ODC=90°, ∴△POF≌△OCD ∴OF=CD,PF=OD, ∴P(4,3) 设直线O1P的解析式为y=kx+b(k≠0), 把O1(1,7)、P(4,3)分别代入y=kx+b, 得, 解得; ∴直线O1P的解析式为y=x+; 若以PQ为直径的圆与⊙O1相切,则点Q为直线O1P与抛物线的交点,可设点Q的坐标为(m,n), 则有n=m+,n=y=m2-m ∴m+=m2-m, 整理得m2+3m-50=0 解得m=, ∴点Q的横坐标为或.
复制答案
考点分析:
相关试题推荐
某公司有甲,乙两个绿色农产品种植基地,在收获期这两个基地当天收获的某种农产品,一部分存入仓库,另一部分运往外地销售,根据经验,该农产品在收获过程中两个种植基地累积总产量y(吨)与收获天数x(天)满足函数关系y=2x+3(1≤x≤10且x为整数).该农产品在收获过程中甲,乙两基地累积产量分别占两基地累积总产量的百分比和甲,乙两基地累积存入仓库的量分别占甲,乙两基地的累积产量的百分比如下表:
项目
百分比
种植基地
该基地的累积产量占两基地累积总产量的百分比该基地累积存入仓库的量占该基地的累积产量的百分比
60%85%
40%22.5%
(1)请用含y的代数式分别表示在收获过程中甲,乙两个基地累积存入仓库的量;
(2)设在收获过程中甲,乙两基地累积存入仓库的该种农产品的总量为p(吨),请求出p(吨)与收获天数x(天)的函数关系式;
(3)在(2)的基础上,若仓库内原有该种农产品42.6吨,为满足本地市场需求,在此收获期开始的同时,每天从仓库调出一部分该种农产品投入本地市场,若在本地市场售出该种农产品总量m(吨)与收获天x(天)满足函数关系m=-x2+13.2x-1.6(1≤x≤10且x为整数).问在此收获期内连续销售几天,该农产品库存量达到最低值?最低库存量是多少吨?
查看答案
已知:关于x的方程mx2-14x-7=0有两个实数根x1,x2,和关于y的方程y2-2(n+1)y+n2+2n=0有两个实数根y1和y2,且-2≤y1<y2≤4
①用含m的代数式manfen5.com 满分网
②用含n的代数式表示2(2y1-y22)+14,并求n的取值范围;
③当manfen5.com 满分网=2(2y1-y22)+14时,求m的取值范围.
查看答案
如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为40千米/时,受影响区域的半径为260千米,B市位于点P的北偏东75°方向上,距离P点480千米.
(1)说明本次台风是否会影响B市;
(2)若这次台风会影响B市,求B市受台风影响的时间.

manfen5.com 满分网 查看答案
某公司组织部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.
manfen5.com 满分网
请根据统计图回答下列问题:
(1)将条形统计图和扇形统计图在图中补充完整;
(2)若A馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若小明抽得的数字比小华抽得的数字大,门票给小明,否则给小华.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平?
查看答案
如图,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连接QE并延长交射线BC于点F.
(1)如图,当BP=BA时,∠EBF=______°,猜想∠QFC=______°;
(2)如图,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.