满分5 > 初中数学试题 >

红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40...

红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:
时间t(天)1361036
日销售量m(件)9490847624
未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=manfen5.com 满分网t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为y2=-manfen5.com 满分网t+40(21≤t≤40且t为整数).
下面我们就来研究销售这种商品的有关问题:
(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;
(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.
(1)从表格可看出每天比前一天少销售2件,所以判断为一次函数关系式; (2)日利润=日销售量×每件利润,据此分别表示前20天和后20天的日利润,根据函数性质求最大值后比较得结论; (3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数性质求a的取值范围. 【解析】 (1)设一次函数为m=kt+b, 将和代入一次函数m=kt+b中, 有, ∴. ∴m=-2t+96. 经检验,其它点的坐标均适合以上解析式, 故所求函数解析式为m=-2t+96; (2)设前20天日销售利润为p1元,后20天日销售利润为p2元. 由p1=(-2t+96)(t+25-20) =(-2t+96)(t+5) =-t2+14t+480 =-(t-14)2+578, ∵1≤t≤20, ∴当t=14时,p1有最大值578(元). 由p2=(-2t+96)(-t+40-20) =(-2t+96)(-t+20) =t2-88t+1920 =(t-44)2-16. ∵21≤t≤40,此函数对称轴是t=44, ∴函数p2在21≤t≤40上,在对称轴左侧,随t的增大而减小. ∴当t=21时,p2有最大值为(21-44)2-16=529-16=513(元). ∵578>513,故第14天时,销售利润最大,为578元; (3)p1=(-2t+96)(t+25-20-a)=-t2+(14+2a)t+480-96a 对称轴为t==14+2a. ∵t取1≤t≤20之内的整数, ∴对称轴14+2a满足20≤14+2a,p1也是随整数t增加而增加. ∴3≤a<4.
复制答案
考点分析:
相关试题推荐
把一个直径为30厘米的精密球体,装进一个棱长为32厘米的正方体箱子里(如图所示).为了使这个精密球体在运输过程中不致晃动,能保持绝对稳定,需要在8个箱角处各放一个大小相同的小球.试探究:这种小球的直径应该有多大?

manfen5.com 满分网 查看答案
附加题:某股票市场,买、卖股票都要分别交纳印花税等有关税费.以A市股的股票交易为例,除成本外还要交纳:
①印花税:按成交金额的0.1%计算;
②过户费:按成交金额的0.1%计算;
③佣金:按不高于成交金额的0.3%计算(本题按0.3%计算),不足5元按5元计算,
例:某投资者以每股5、00元的价格在沪市A股中买入股票“金杯汽车”1000股,以每股5.50元的价格全部卖出,共盈利多少?
【解析】
直接成本:5×1000=5000(元);
印花税:(5000+5.50×1000)×0.1%=10.50(元);
过户费:(5000+5.50×1000)×0.1%=10.50(元);
∵31.50>5,∴佣金为31.50元.
总支出:5000+10.50+10.50+31.50=5052.50(元)
总收入:5.50×1000=5500(元)
问题:
(1)小王对此很感兴趣,以每股5.00元的价格买入以上股票100股,以每股5.50元的价格全部卖出,则他盈利为______元;
(2)小张以每股a(a≥5)元的价格买入以上股票1000股,股市波动大,他准备在不亏不盈时卖出.请你帮他计算出卖出的价格每股是______元(用a的代数式表示),由此可得卖出价格与买入价格相比至少要上涨______%才不亏(结果保留三个有效数字);
(3)小张再以每股5.00元的价格买入以上股票1000股,准备盈利1000元时才卖出,请你帮他计算卖出的价格每股是多少元?(精确到0.01元)
查看答案
如图,在平面直角坐标系xOy中,⊙O交x轴于A、B两点,直线FA⊥x轴于点A,点D在FA上,且DO平行⊙O的弦MB,连DM并延长交x轴于点C.
(1)判断直线DC与⊙O的位置关系,并给出证明;
(2)设点D的坐标为(-2,4),试求MC的长及直线DC的解析式.

manfen5.com 满分网 查看答案
某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到______元购物券,至多可得到______元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
查看答案
振兴中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:8:6,又知此次调查中捐款25元和30元的学生一共42人.
(1)他们一共调查了多少人?
(2)这组数据的众数、中位数各是多少?
(3)若该校共有1560名学生,估计全校学生捐款多少元?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.