满分5 >
初中数学试题 >
对于直角坐标平面内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一...
对于直角坐标平面内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:
||AB||=|x2-x1|+|y2-y1|.给出下列三个命题:
①若点C在线段AB上,则||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90°,则||AC||2+||CB||2=||AB||2;
③在△ABC中,||AC||+||CB||>||AB||.其中真命题的个数为( )
A.0
B.1
C.2
D.3
考点分析:
相关试题推荐
某同学用牙膏纸盒制作一个如图所示的笔筒,笔筒的筒底为长4.5厘米,宽3.4厘米的矩形.则该笔筒最多能放半径为0.4厘米的圆柱形铅笔( )
A.20支
B.21支
C.22支
D.25支
查看答案
如图,在锐角△ABC中,以BC为直径的半圆O分别交AB,AC与D、E两点,且
,则S
△ADE:S
四边形DBCE的值为( )
A.
B.
C.
D.
查看答案
运算与推理以下是甲、乙两人得到
+
>
的推理过程:(甲)因为
>
=3,
>
=2,所以
+
>3+2=5.又
=
<
=5,所以
+
>
.(乙)作一个直角三角形,两直角边长分别为
,
.利用勾股定理得斜边长的平方为14长,所以
+
>
.对于两个人的推理,下列说法中正确的是( )
A.两人都正确
B.两人都错误
C.甲正确,乙错误
D.甲错误,乙正确
查看答案
已知抛物线y=ax
2+bx-4的图象与x相交于A、B(点A在B的左边),与y轴相交于C,抛物线过点A(-1,0)且OB=OC.P是线段BC上的一个动点,过P作直线PE⊥x轴于E,交抛物线于F.
(1)求抛物线的解析式;
(2)若△BPE与△BPF的两面积之比为2:3时,求E点的坐标;
(3)设OE=t,△CPE的面积为S,试求出S与t的函数关系式;当t为何值时,S有最大值,并求出最大值;
(4)在(3)中,当S取得最大值时,在抛物线上求点Q,使得△QEC是以EC为底边的等腰三角形,求Q的坐标.
查看答案
如图1是脚踩式家用垃圾桶,图2是它的内部结构示意图.EF是一根固定的圆管,轴MN两头是可以滑动的圆珠,且始终在圆管内上下滑动.点A是横杆BN转动的支点.当横杆BG踩下时,N移动到N′.已知点B、A、N、G的水平距离如图所示,支点的高度为3cm.
(1)当横杆踩下至B′时,求N上升的高度;
(2)垃圾桶设计要求是:垃圾桶盖必须绕O点旋转75°.试问此时的制作是否符合设计要求?请说明理由.
(3)在制作的过程中,可以移动支点A(无论A点如何移,踩下横杆BG时,B点始终落在B′点),试问:如何移动支点(向左或右移动,移动多少距离)才能符合设计要求?请说明理由.(本小题结果精确到0.01cm)
查看答案