满分5 > 初中数学试题 >

如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8...

如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

manfen5.com 满分网
(1)由抛物线过A、B、C三点可求出抛物线表达式; (2)假设存在,设出P点,解出直线CD的解析式,根据点P到CD的距离等于PO可解出P点坐标; (3)应分两种情况:抛物线向上或下平移,设出解析式,代入点求出平移的单位长度. 【解析】 (1)设抛物线解析式为y=a(x+2)(x-4). 把C(0,8)代入,得a=-1. ∴y=-x2+2x+8=-(x-1)2+9, 顶点D(1,9);(2分) (2)假设满足条件的点P存在.依题意设P(2,t). 由C(0,8),D(1,9)求得直线CD的解析式为y=x+8, 它与x轴的夹角为45°. 设OB的中垂线交CD于H,则H(2,10). 则PH=|10-t|,点P到CD的距离为. 又.(4分) ∴. 平方并整理得:t2+20t-92=0,解之得t=-10±8. ∴存在满足条件的点P,P的坐标为(2,-10±8).(6分) (3)由上求得E(-8,0),F(4,12). ①若抛物线向上平移,可设解析式为y=-x2+2x+8+m(m>0). 当x=-8时,y=-72+m. 当x=4时,y=m. ∴-72+m≤0或m≤12. ∴0<m≤72.(8分) ②若抛物线向下平移,可设解析式为y=-x2+2x+8-m(m>0). 由, 有-x2+x-m=0. ∴△=1+4m≥0, ∴m≥-. ∴向上最多可平移72个单位长,向下最多可平移个单位长.(10分)
复制答案
考点分析:
相关试题推荐
如图,在矩形ABCD中,AB=6,AD=4,E是AD边上一点(点E与A、D不重合).BE的垂直平分线交AB于M,交DC于N.
(1)设AE=x,试把AM用含x的代数式表示出来;
(2)设AE=x,四边形ADNM的面积为S.写出S关于x的函数关系式.

manfen5.com 满分网 查看答案
如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中manfen5.com 满分网上一点,延长DA至点E,使CE=CD.
(1)求证:AE=BD;
(2)若AC⊥BC,求证:AD+BD=manfen5.com 满分网CD.

manfen5.com 满分网 查看答案
如图,点A(m,m+1),B(m+3,m-1)都在反比例函数manfen5.com 满分网的图象上.
(1)求m,k的值;
(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.

manfen5.com 满分网 查看答案
一个家电维修中心有技术员工和辅助员工共15人,技术员工数是辅导员工数的2倍.家电维修中心计划对员工发放奖金共计20000元,按“技术员工个人奖金”A元和“辅导员工个人奖金”B元两种标准发放,其中A≥B≥800,并且A,B都是100的整数倍.
(1)求该家电维修中心中技术员工和辅导员工的人数;
(2)求本次奖金发放的具体方案?
查看答案
一口袋中有四根长度分别为1cm,3cm,4cm和5cm的细木棒,小明手中有一根长度为3cm的细木棒,现随机从袋内取出两根细木棒与小明手中的细木棒放在一起,回答下列问题:
(1)求这三根细木棒能构成三角形的概率;
(2)求这三根细木棒能构成直角三角形的概率;
(3)求这三根细木棒能构成等腰三角形的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.