满分5 > 初中数学试题 >

半径为2.5的⊙O中,直径AB的不同侧有定点C和动点P.已知BC:CA=4:3,...

manfen5.com 满分网半径为2.5的⊙O中,直径AB的不同侧有定点C和动点P.已知BC:CA=4:3,点P在manfen5.com 满分网上运动,过点C作CP的垂线,与PB的延长线交于点Q.
(1)当点P与点C关于AB对称时,求CQ的长;
(2)当点P运动到manfen5.com 满分网的中点时,求CQ的长;
(3)当点P运动到什么位置时,CQ取到最大值?求此时CQ的长.
(1)如果点P与点C关于AB对称,根据垂径定理可得出CP⊥AB,在直角三角形ABC中,根据△ABC面积的不同表示方法可求出CD的长,即可得出PC的值,进而可通过相似三角形△PQC和△ABC(∠A=∠P,一组直角)求出CQ的长. (2)当点P运动到弧AB的中点时,过点B作BE⊥PC于点E(如图);由于P是弧AB的中点,由圆周角定理得∠ACP=∠PCB=45°,由△CEB是等腰直角三角形,可得CE=BE=BC=2;又由圆周角定理得∠CPB=∠CAB,由正切的概念知tan∠CPB=tan∠CAB==BE:PE,得到PE=BE=进而求得PC,而从(1)中得,CQ=PC=. (3)如果CQ去最大值,那么PC也应该取最大值,因此当PC是圆O的直径时,CQ才取最大值.此时PC为5,可根据上面得出的PC、CQ的比例关系求出CQ的长. 【解析】 (1)当点P与点C关于AB对称时,CP⊥AB,设垂足为D. ∵AB为⊙O的直径, ∴∠ACB=90°. ∴AB=5,又∵BC:CA=4:3, ∴BC=4,AC=3. 又∵AC•BC=AB•CD ∴CD=,PC= 在Rt△ACB和Rt△PCQ中, ∠ACB=∠PCQ=90°,∠CAB=∠CPQ, Rt△ACB∽Rt△PCQ ∴, ∴CQ==PC=. (2)当点P运动到弧AB的中点时,过点B作BE⊥PC于点E(如图). ∵P是弧AB的中点, ∴∠PCB=45°,CE=BE=BC=2 又∠CPB=∠CAB ∴tan∠CPB=tan∠CAB= ∴PE=BE=,PC= 而从(1)中得,CQ=PC=. (3)点P在弧AB上运动时,恒有CQ==PC; 故PC最大时,CQ取到最大值. 当PC过圆心O,即PC取最大值5时,CQ最大值为.
复制答案
考点分析:
相关试题推荐
如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)题中的抛物线上有一个动点P,当点P在抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标;
(3)设(1)题中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
我们把能平分四边形面积的直线称为“好线”.利用下面的作图,可以得到四边形的“好线”:在四边形ABCD中,取对角线BD的中点O,连接OA、OC.显然,折线AOC能平分四边形ABCD的面积,再过点O作OE∥AC交CD于E,则直线AE即为一条“好线”.
manfen5.com 满分网
(1)试说明直线AE是“好线”的理由;
(2)如下图,AE为一条“好线”,F为AD边上的一点,请作出经过F点的“好线”,并对画图作适当说明(不需要说明理由).
查看答案
武当山风景管理区,为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改善,把倾角由44°减至32°,已知原台阶AB的长为5米(BC所在地面为水平面).
(1)改善后的台阶会加长多少?(精确到0.01米)
(2)改善后的台阶多占多长一段地面?(精确到0.01米)

manfen5.com 满分网 查看答案
在某旅游景区上山的一条小路上,有一些断断续续的台阶,如图是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:
(1)两段台阶路有哪些相同点和不同点?
(2)哪段台阶路走起来更舒服,为什么?
(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.
manfen5.com 满分网
查看答案
如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程y与经过的时间x之间的函数关系.请根据图象填空:
______出发的早,早了______小时,______先到达,先到______小时,电动自行车的速度为______km/h,汽车的速度为______km/h.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.