满分5 > 初中数学试题 >

如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,A...

manfen5.com 满分网如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求证:BC=manfen5.com 满分网AB;
(3)点M是manfen5.com 满分网的中点,CM交AB于点N,若AB=4,求MN•MC的值.
(1)已知C在圆上,故只需证明OC与PC垂直即可;根据圆周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切线; (2)AB是直径;故只需证明BC与半径相等即可; (3)连接MA,MB,由圆周角定理可得∠ACM=∠BCM,进而可得△MBN∽△MCB,故BM2=MN•MC;代入数据可得MN•MC=BM2=8. (1)证明:∵OA=OC, ∴∠A=∠ACO. 又∵∠COB=2∠A,∠COB=2∠PCB, ∴∠A=∠ACO=∠PCB. 又∵AB是⊙O的直径, ∴∠ACO+∠OCB=90°. ∴∠PCB+∠OCB=90°. 即OC⊥CP, ∵OC是⊙O的半径. ∴PC是⊙O的切线.(3分) (2)证明:∵AC=PC, ∴∠A=∠P, ∴∠A=∠ACO=∠PCB=∠P. 又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB, ∴∠COB=∠CBO, ∴BC=OC. ∴BC=AB.(6分) (3)【解析】 连接MA,MB, ∵点M是的中点, ∴, ∴∠ACM=∠BCM. ∵∠ACM=∠ABM, ∴∠BCM=∠ABM. ∵∠BMN=∠BMC, ∴△MBN∽△MCB. ∴. ∴BM2=MN•MC. 又∵AB是⊙O的直径,, ∴∠AMB=90°,AM=BM. ∵AB=4, ∴BM=2. ∴MN•MC=BM2=8.(10分)
复制答案
考点分析:
相关试题推荐
如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?
manfen5.com 满分网
查看答案
小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1,2,3,4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.
(1)用树状图或列表法求出小明先挑选的概率;
(2)你认为这个游戏公平吗?请说明理由.
查看答案
如图,半圆O的直径AB=20.将半圆O绕着点B顺时针旋转54°得到半圆O′,弧A′B交AB于点P.
(1)求AP的长;
(2)求图中阴影部分的面积(结果精确到0.1).
(参考数据:sin54°=0.81,cos54°=0.59,tan54°=1.38,π=3.14.)

manfen5.com 满分网 查看答案
已知二次函数y=x2+bx+c中,函数y与x的部分对应值如下表:
x-11234
y1052125
根据上表可知,当x    时,y有最    值(填“大”或“小”)是    查看答案
小红要制作一个高4cm,底面直径是6cm的圆锥形小漏斗,若不计接缝,不计损耗,则它所需纸板的面积是多少?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.