由a+b+c=2,a2+b2+c2=3,利用两个等式之间的平方关系得出ab+bc+ac=;再根据已知条件将各分母因式分解,通分,代入已知条件即可.
【解析】
由a+b+c=2,两边平方,
得a2+b2+c2+2ab+2bc+2ac=4,
将已知代入,得ab+bc+ac=;
由a+b+c=2得:c-1=1-a-b,
∴ab+c-1=ab+1-a-b=(a-1)(b-1),
同理,得bc+a-1=(b-1)(c-1),
ca+b-1=(c-1)(a-1),
∴原式=++
=
=
=
==-.
故选D.