满分5 > 初中数学试题 >

问题探究: (1)请你在图①中做一条直线,使它将矩形ABCD分成面积相等的两部分...

问题探究:
(1)请你在图①中做一条直线,使它将矩形ABCD分成面积相等的两部分;
(2)如图②点M是矩形ABCD内一点,请你在图②中过点M作一条直线,使它将矩形ABCD分成面积相等的两部分.
问题解决:
(3)如图③,在平面直角坐标系中,直角梯形OBCD是某市将要筹建的高新技术开发区用地示意图,其中DC∥OB,OB=6,CD=BC=4开发区综合服务管理委员会(其占地面积不计)设在点P(4,2)处.为了方便驻区单位准备过点P修一条笔直的道路(路宽不计),并且是这条路所在的直线l将直角梯形OBCD分成面积相等的两部分,你认为直线l是否存在?若存在,求出直线l的表达式;若不存在,请说明理由.
manfen5.com 满分网
(1)矩形的对角线把矩形分成面积相等的两部分. (2)连接AC,BD中心点位P,过P点的直线分矩形为相等的两部分. (3)假如存在,过点D的直线只要作DA⊥OB与点A,求出P点的坐标,设直线PH的表达式为y=kx+b,解出点H的坐标,求出斜率k和b.若k和b存在,直线就存在. 【解析】 (1)如图①. (2)如图②连接AC、BD交于P则P为矩形对称中心.作直线MP,直线MP即为所求. (3)如图③存在直线l, 过点D的直线作DA⊥OB于点A, 则点P(4,2)为矩形ABCD的对称中心, ∴过点P的直线只要平分△DOA的面积即可, 易知,在OD边上必存在点H使得PH将△DOA面积平分. 从而,直线PH平分梯形OBCD的面积, 即直线PH为所求直线l 设直线PH的表达式为y=kx+b且点P(4,2), ∴2=4k+b即b=2-4k, ∴y=kx+2-4k, ∵直线OD的表达式为y=2x, ∴,解之. ∴点H的坐标为(x=,y=) 把x=2代入直线PH的解析式y=kx+2-4k,得y=2-2k, ∴PH与线段AD的交点F(2,2-2k), ∴0<2-2k<4, ∴-1<k<1. ∴S△DHF=(4-2+2k)•(2-)=××2×4, ∴解之,得k=.(k=舍去) ∴b=8-2, ∴直线l的表达式为y=.
复制答案
考点分析:
相关试题推荐
如图,直线EF交⊙O于A、B两点,AC是⊙O直径,DE是⊙O的切线,且DE⊥EF,垂足为E.
(1)求证:AD平分∠CAE;
(2)若DE=4cm,AE=2cm,求⊙O的半径.

manfen5.com 满分网 查看答案
如图,要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?

manfen5.com 满分网 查看答案
在电视台举行的“超级女生”比赛中,甲、乙、丙三位评委对选手的综合表现,分别给出“待定”或“通过”的结论.
(1)写出三位评委给出A选手的所有可能的结论;
(2)对于选手A,只有甲、乙两位评委给出相同结论的概率是多少?
查看答案
如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:
(1)△ACE≌△BCD;
(2)AD2+DB2=DE2

manfen5.com 满分网 查看答案
已知x(x-1)-(x2-y)=-3,求x2+y2-2xy的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.