满分5 > 初中数学试题 >

在锐角△ABC中,∠BAC=60°,BD、CE为高,F是BC的中点,连接DE、E...

在锐角△ABC中,∠BAC=60°,BD、CE为高,F是BC的中点,连接DE、EF、FD.则以下结论中一定正确的个数有( )
①EF=FD;②AD:AB=AE:AC;③△DEF是等边三角形;
④BE+CD=BC;⑤当∠ABC=45°时,BE=manfen5.com 满分网DE.
manfen5.com 满分网
A.2个
B.3个
C.4个
D.5个
①EF、FD是直角三角形斜边上的中线,都等于BC的一半;②可证△ABD∽△ACE;③证明∠EFD=60°;④假设结论成立,在BC上取满足条件的点H,证明其存在性;⑤当∠ABC=45°时,EF不一定是BC边的高. 【解析】 ①∵BD、CE为高,∴△BEC、△BDC是直角三角形. ∵F是BC的中点,∴EF=DF=BC.故正确; ②∵∠ADB=∠AEC=90°,∠A公共,∴△ABD∽△ACE,得AD:AB=AE:AC.故正确; ③∵∠A=60°,∴∠ABC+∠ACB=120°. ∵F是BC的中点,∴EF=BF,DF=CF.∴∠ABF=∠BEF,∠ACB=∠CDF. ∴∠BFE+∠CFD=120°,∠EFD=60°.又EF=FD,∴△DEF是等边三角形.故正确; ④若BE+CD=BC,则可在BC上截取BH=BE,则HC=CD. ∵∠A=60°,∴∠ABC+∠ACB=120°.又∵BH=BE,HC=CD, ∴∠BHE+∠CHD=120°,∠EHD=60°. 所以存在满足条件的点,假设成立,但一般情况不一定成立,故错误; ⑤当∠ABC=45°时,在Rt△BCE中,BC=BE,在Rt△ABD中,AB=2AD, 由B、C、D、E四点共圆可知,△ADE∽△ABC, ∴==,即=,∴BE=DE,故正确; 故此题选C.
复制答案
考点分析:
相关试题推荐
若关于x的一元二次方程为ax2-3bx-5=0(a≠0)有一个根为x=2,那么4a-6b的值是( )
A.4
B.5
C.8
D.10
查看答案
如图,反比例函数与正比例函数的图象相交于A、B两点,过点A作AC⊥x轴于点C.若△ABC的面积是4,则这个反比例函数的解析式为( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
用12个大小相同的小正方体搭成的几何体如图所示,标有正确小正方体个数的俯视图是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
如图,均匀地向此容器注水,直到把容器注满.在注水的过程中,下列图象能大致反映水面高度h随时间t变化规律的是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
如图,⊙O的直径AB=10cm,弦CD⊥AB,垂足为P.若OP:OB=3:5,则CD的长为( )
manfen5.com 满分网
A.6cm
B.4cm
C.8cm
D.10cm
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.