满分5 > 初中数学试题 >

小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千...

小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O-A-B-C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:
(1)小聪在天一阁查阅资料的时间为______分钟,小聪返回学校的速度为______千米/分钟;
(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;
(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?

manfen5.com 满分网
(1)直接根据图象上所给的数据的实际意义可求解; (2)由图象可知,s是t的正比例函数,设所求函数的解析式为s=kt(k≠0),把(45,4)代入解析式利用待定系数法即可求解; (3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n(m≠0) 把(30,4),(45,0)代入利用待定系数法先求得函数关系式,再根据求函数图象的交点方法求得交点坐标即可. 【解析】 (1)∵30-15=15,4÷15= ∴小聪在天一阁查阅资料的时间和小聪返回学校的速度分别是15分钟,千米/分钟. (2)由图象可知,s是t的正比例函数 设所求函数的解析式为s=kt(k≠0) 代入(45,4),得 4=45k 解得k= ∴s与t的函数关系式s=t(0≤t≤45). (3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n(m≠0) 代入(30,4),(45,0),得 解得 ∴s=-t+12(30≤t≤45) 令-t+12=t,解得t= 当t=时,S=×=3. 答:当小聪与小明迎面相遇时,他们离学校的路程是3千米.
复制答案
考点分析:
相关试题推荐
如图,△OAB中,OA=OB,∠A=30°,⊙O经过AB的中点E分别交OA、OB于C、D两点,连接CD.
(1)求证:AB是⊙O的切线.
(2)求证:CD∥AB.
(3)若CD=4manfen5.com 满分网,求扇形OCED的面积.

manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠C=90°,AC=15,BC=10,四边形CDEF是正方形,连接AF交DE于点G.求正方形CDEF的边长和EG的长.

manfen5.com 满分网 查看答案
阅读理解题:
定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.
例如计算:(5+i)×(3-4i)=19-17i.
(1)填空:i3=______,i4=______
(2)计算:(3+i)2
(3)试一试:请利用以前学习的有关知识将manfen5.com 满分网化简成a+bi的形式.
查看答案
先化简:(a-manfen5.com 满分网manfen5.com 满分网,然后给a选择一个你喜欢的数代入求值.
查看答案
如图,在△ABC中,点D、E、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四种说法:
①四边形AEDF是平行四边形;
②如果∠BAC=90°,那么四边形AEDF是矩形;
③如果AD平分∠BAC,那么四边形AEDF是菱形;
④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.
其中,正确的有    (只填写序号).
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.